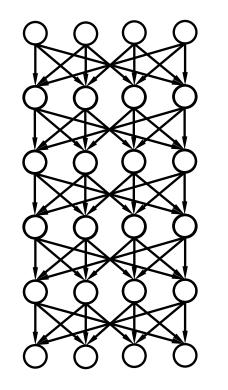
Graph Structure of Neural Networks

Jiaxuan You¹, Jure Leskovec¹, Kaiming He², Saining Xie²

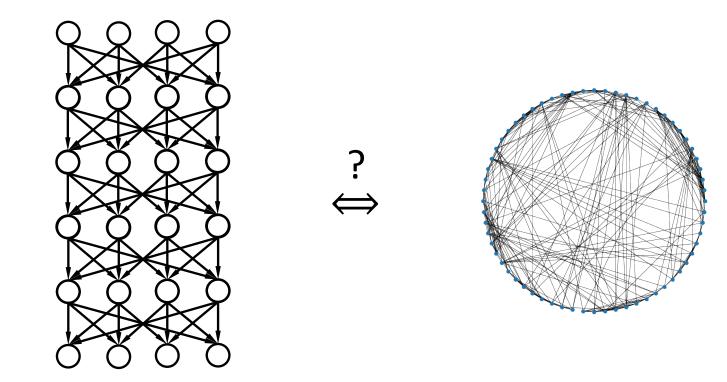
Stanford University¹ Facebook AI Research²

FACEBOOK



Neural networks consist of neurons

We know connections between neurons affect NN performance *But how?*

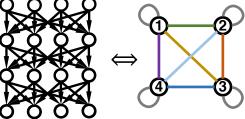


Underneath a NN, there is a graph

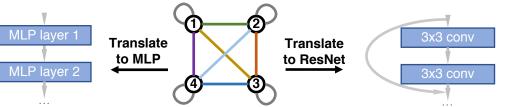
We want to find a proper graph representation of NN to answer: Is there a link between the graph structure and NN performance? If so, what are structural signatures of well-performing NNs? Can these signatures generalize across tasks and datasets?

Overview: Methodology

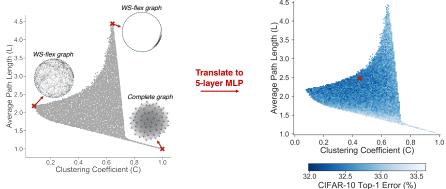
A novel representation of neural networks: relational graphs



Relational graphs can represent diverse neural architectures



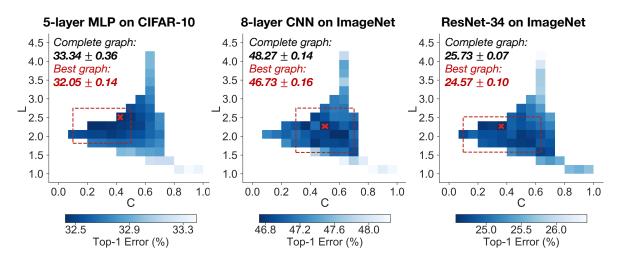
• Tools from network science \rightarrow Graph structure vs NN performance



J. You, J. Leskovec, K. He, S. Xie, Graph Structure of Neural Networks, ICML 2020

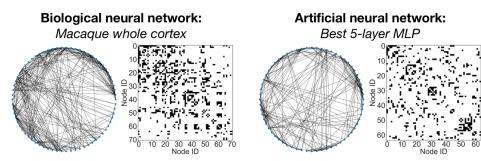
Overview: Key Findings

Consistent "Sweet Spot" for top NNs across architectures



 Graphs with certain structure measures consistently performs well (controlling computational budgets)

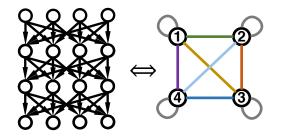
Top artificial NNs are similar to real biological NNs



• Graph structure of the best 5-layer MLP we found, is similar to the macaque whole cortex network

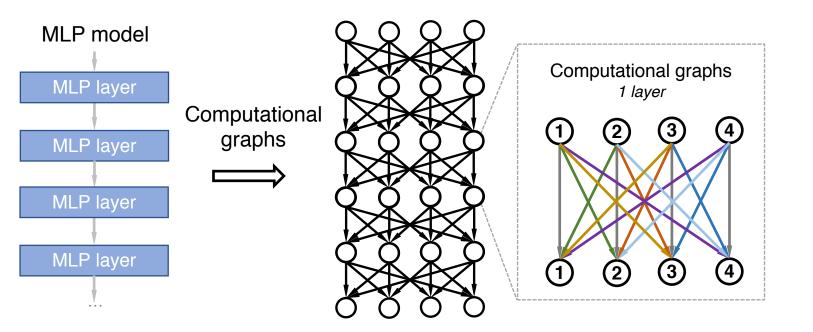
Overview: Methodology

- A novel representation of neural networks: relational graphs \leftarrow
 - Computational vs. Relational graphs
 - Neural computation as **message exchange** on relational graphs



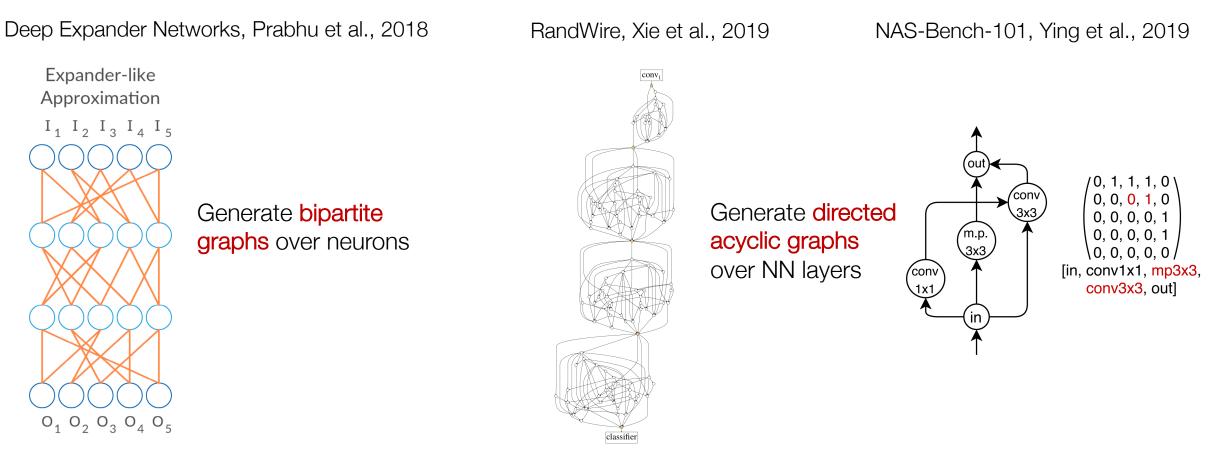
- Relational graphs can represent diverse neural architectures
- Tools from network science \rightarrow Graph structure vs NN performance

Background: NNs as Computational Graphs

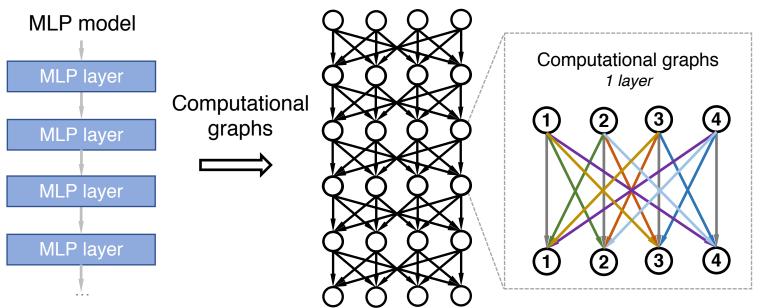


Background: Related Work

Existing graph-based architecture design approaches focus on computational graphs



Limitations: NNs as Computational Graphs



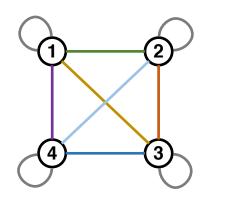
Limitations:

- Lack of flexibility
 - Directed acyclic graphs
- Disconnection with neuroscience
 - Brain networks have flexible structure
 - Bi-directional information exchange

Our Approach: Relational Graphs

Relational Graphs

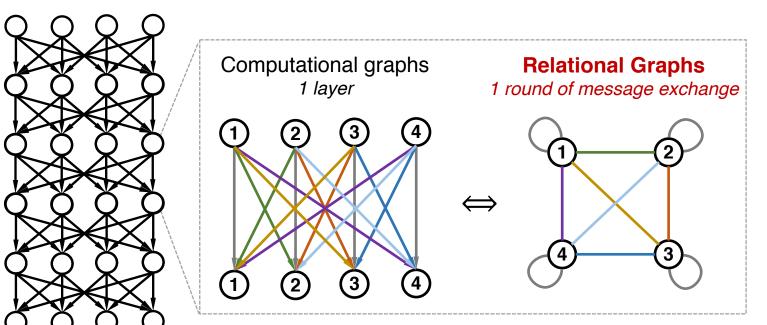
1 round of message exchange



Relational graph definition:

- Nodes are neurons
- Edges specify (undirected) connectivity between neurons;
- **Computation** is conducted by message exchange over the graph structure, where a node exchange messages with its neighbors

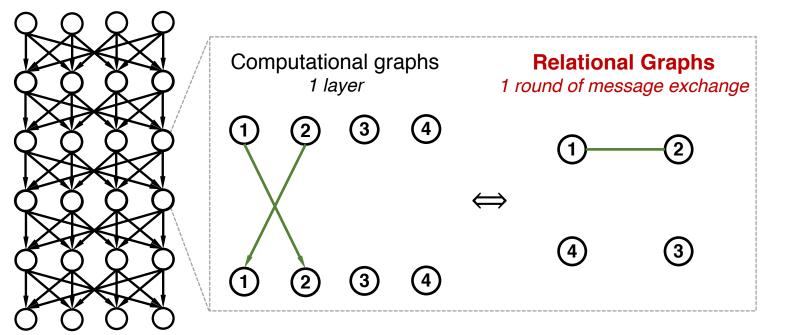
Our approach: Relational Graphs



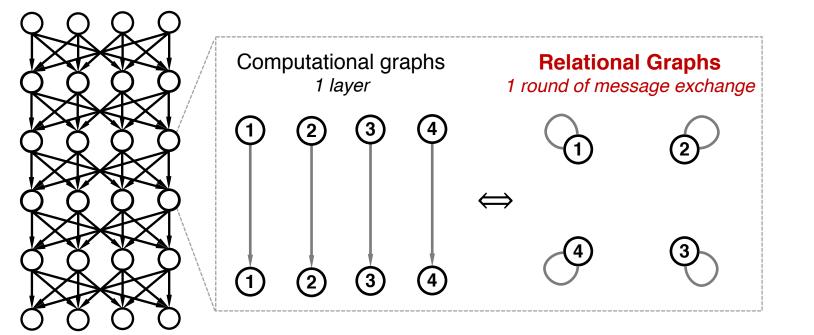
Relational graph definition:

- Nodes are neurons
- Edges specify (undirected) connectivity between neurons;
- Computation is conducted by message exchange over the graph structure, where a node exchange messages with its neighbors

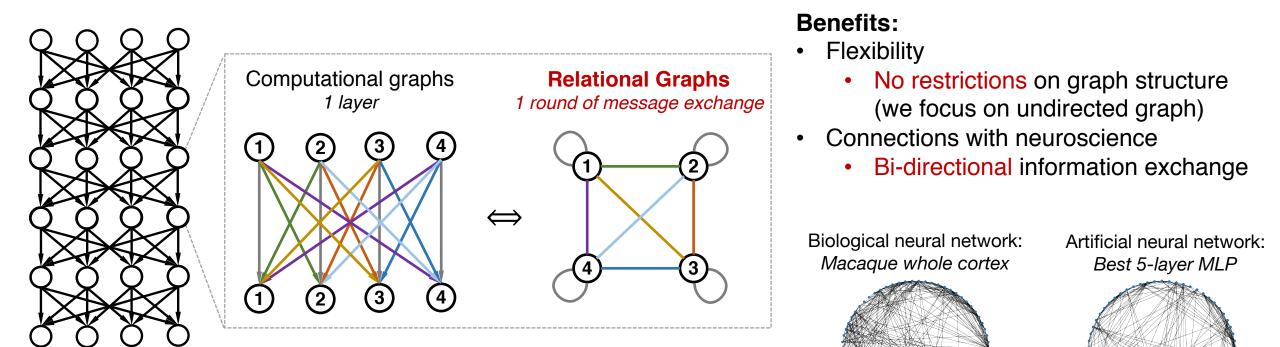
Our approach: Relational Graphs



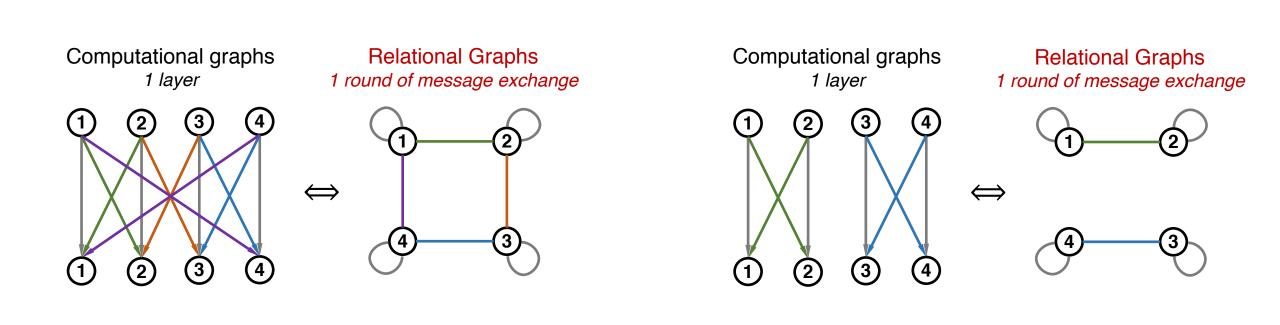
Our Approach: Relational Graphs



Benefits of Relational Graphs

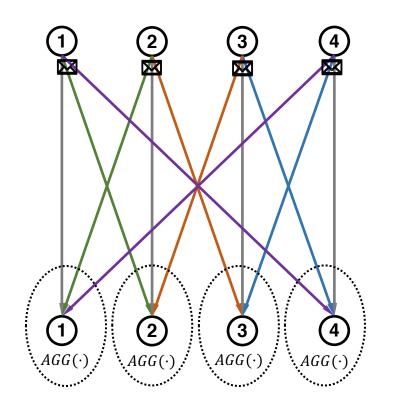


Diverse Relational Graphs

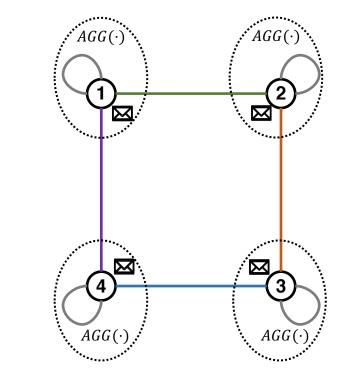


Neural Computation as Message Exchange

Computational graphs Directed message flow

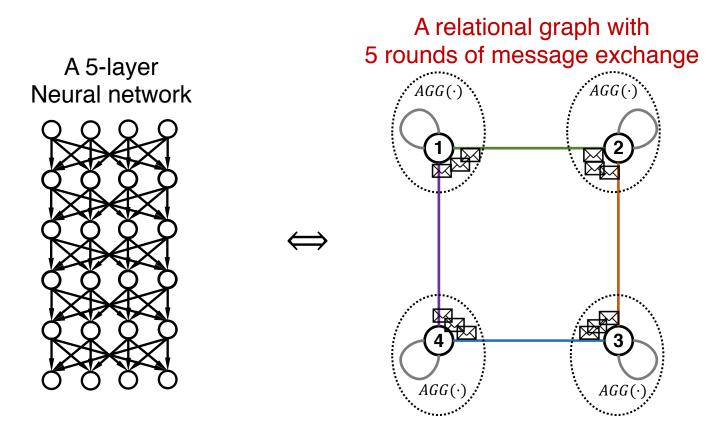


Relational graphs *Bi-Directed message exchange*



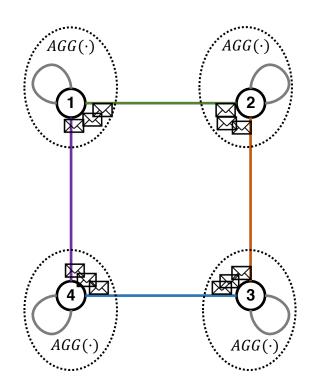
 \Leftrightarrow

Neural Network as Rounds of Message Exchange



This is how Graph Neural Networks compute embeddings!

Side Note: Connections with GNNs



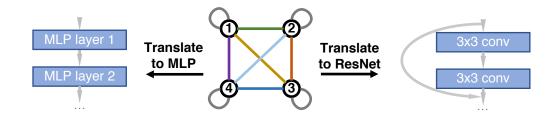
This is how Graph Neural Networks compute embeddings!

Specialty of GNNs:

- (1) Graph structure is regarded as the **input instead of neural architecture**;
- (2) Message functions are shared across all the edges to respect input graph's invariance properties.

Overview: Methodology

- A novel representation of neural networks: relational graphs
- Relational graphs can represent diverse neural architectures \leftarrow
 - Can represent architectures from MLP to ResNet

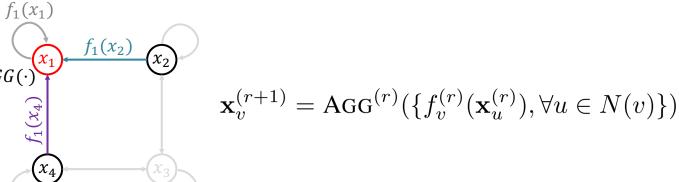


• Tools from network science \rightarrow Graph structure vs NN performance

Relational Graphs \rightarrow Diverse Architectures

Relational Graph

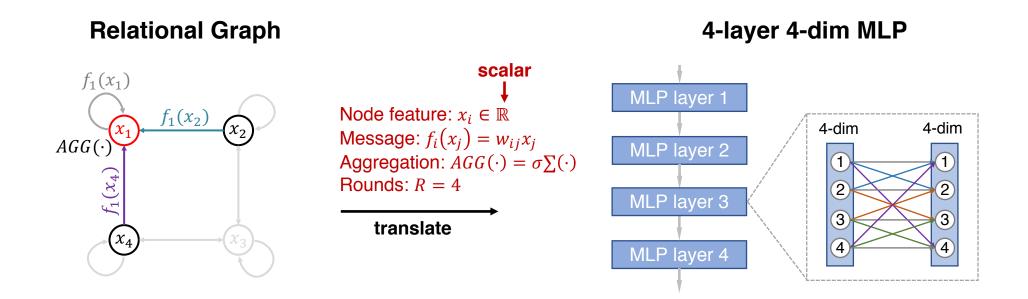
 $AGG(\cdot)$



The same relational graph \rightarrow diverse architectures

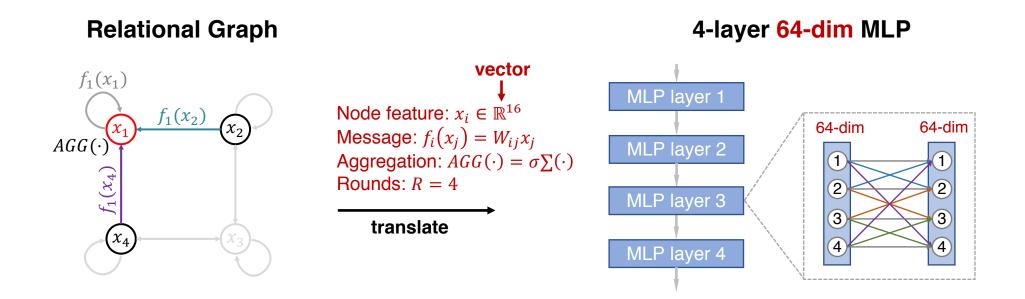
4 Key components	Fixed-width MLP	Variable-width MLP	ResNet-34	ResNet-34-sep	ResNet-50
Node feature \mathbf{x}_i	Scalar: 1 dimension of data	Vector: multiple dimensions of data	Tensor: multiple channels of data	Tensor: multiple channels of data	Tensor: multiple channels of data
Message function $f_i(\cdot)$	Scalar multiplication	(Non-square) matrix multiplication	3×3 Conv	3×3 depth-wise and 1×1 Conv	3×3 and 1×1 Conv
Aggregation function $AGG(\cdot)$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$
Number of rounds R	1 round per layer	1 round per layer	34 rounds with residual connections	34 rounds with residual connections	50 rounds with residual connections

Relational Graphs \rightarrow Diverse Architectures



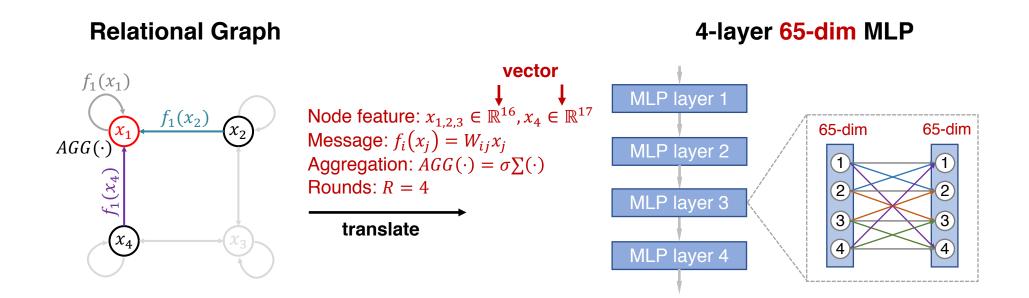
MLP as relational graph

Relational Graphs -> Diverse Architectures



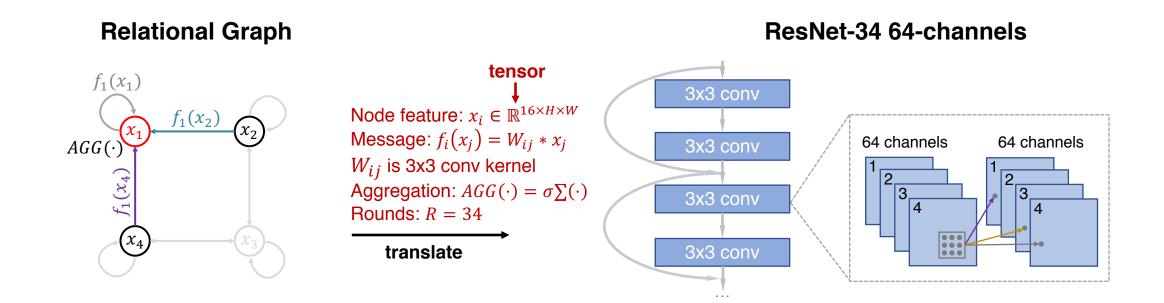
MLP as relational graph

Relational Graphs -> Diverse Architectures



MLP as relational graph

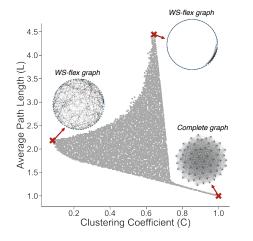
Relational Graphs -> Diverse Architectures



ResNet-34 as relational graph

Overview

- A novel representation of neural networks: relational graphs
- Relational graphs can represent diverse neural architectures
- Network science → Graph structure vs NN performance ←
 - Graph measures that characterize graph properties
 - Graph generators that generate diverse graphs
 - Control computational budget



Measuring Graph Structure

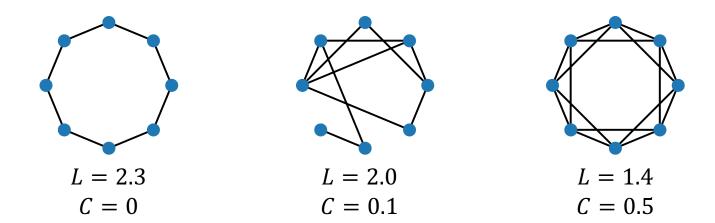
Graph measures:

• Global: average path length (L)

The average shortest path distance between any pair of nodes

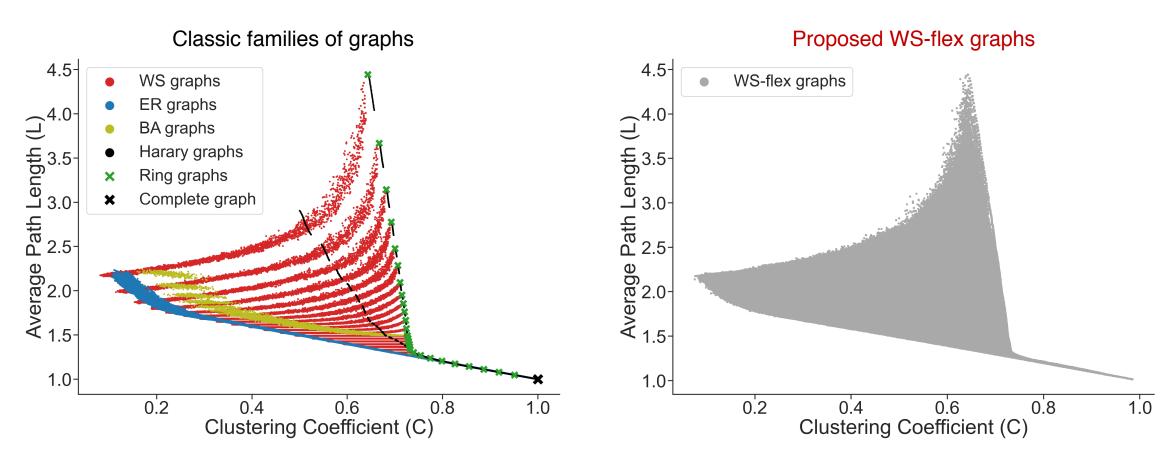
Local: clustering coefficient (C)

A measure of the degree to which nodes in a graph tend to cluster together

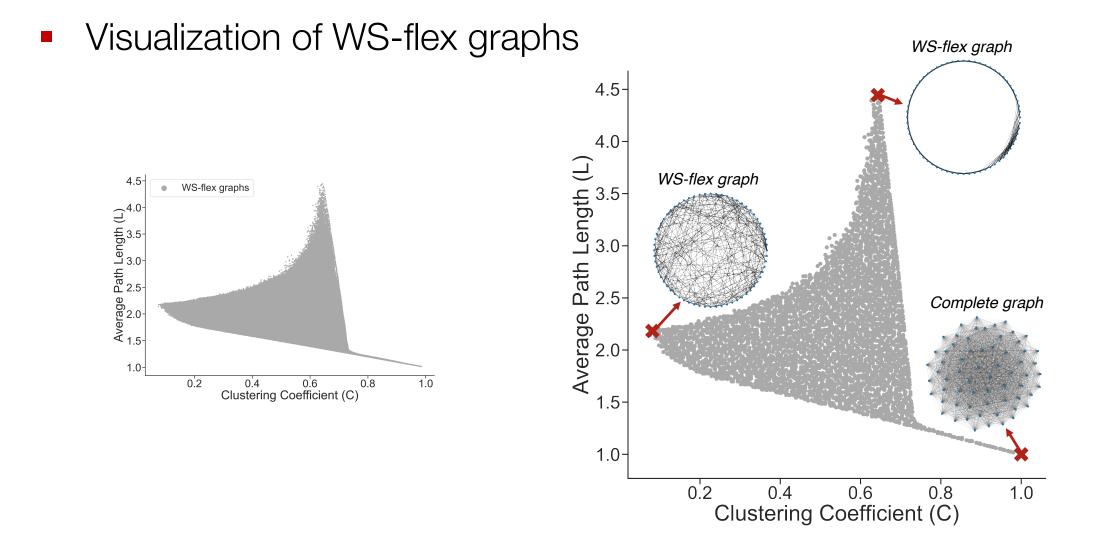


Generating Diverse Graphs

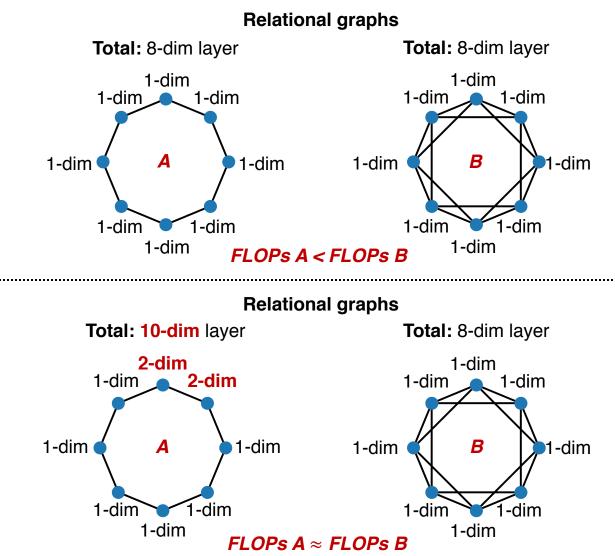
WS-flex graphs have a much better coverage



Generating Diverse Graphs



We Control Computational Budget



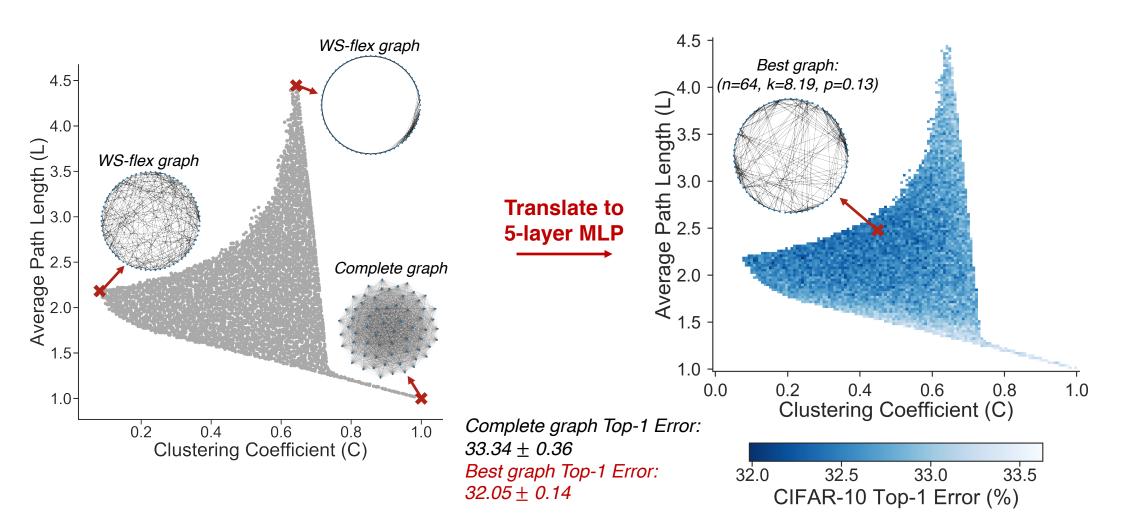
Have different computational FLOPs! ⊗ FLOPs = O(num of edges)

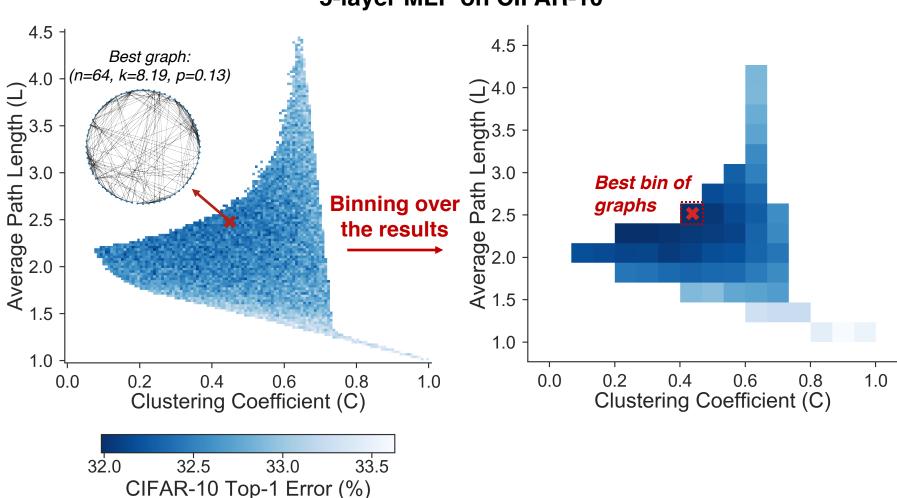
Matched computational FLOPs! © By controlling each node's dimension

Experimental Setup

- 5-layer 512-dim MLPs on CIFAR-10
 - 3942 graphs, results averaged over 5 seeds
- CNNs & ResNet families & EfficientNet-B0 on ImageNet
 - 52 graphs per experiment, results averaged over 3 seeds
- Computational budgets in all experiments are controlled

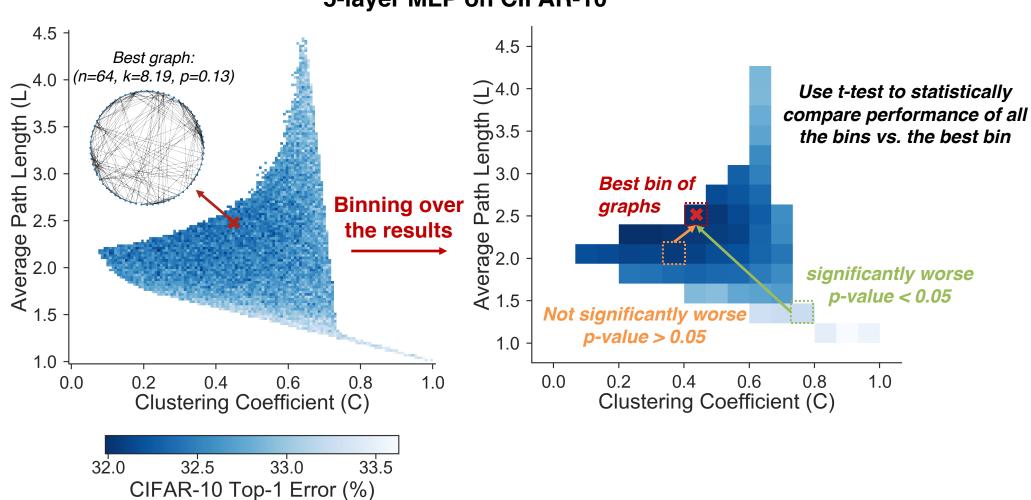
- Finding 1: Consistent Sweet Spot for top NNs across architectures
- Finding 2: NN Performance as a smooth function over graph measures
- Finding 3: Sweet spot can be quickly identified
- Finding 4: Top artificial NNs are similar to real NNs



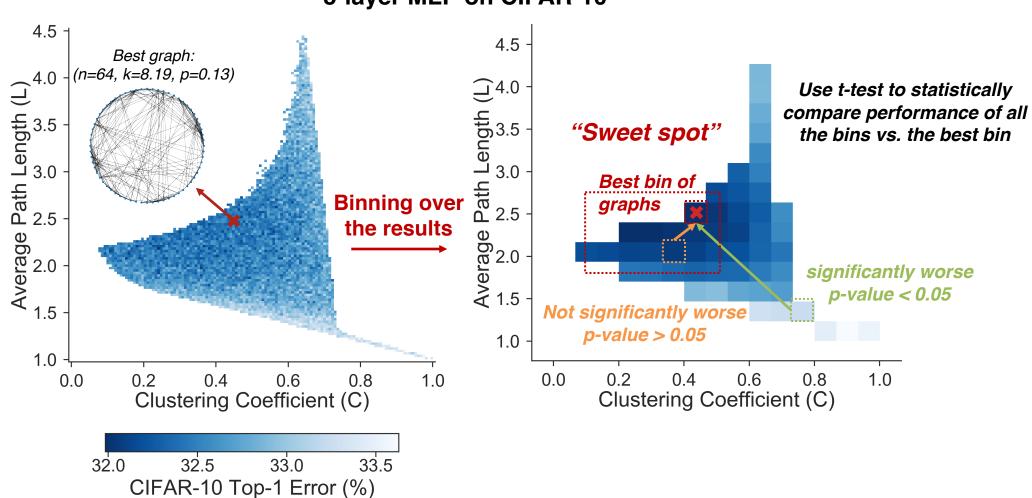


5-layer MLP on CIFAR-10

J. You, J. Leskovec, K. He, S. Xie, Graph Structure of Neural Networks, ICML 2020



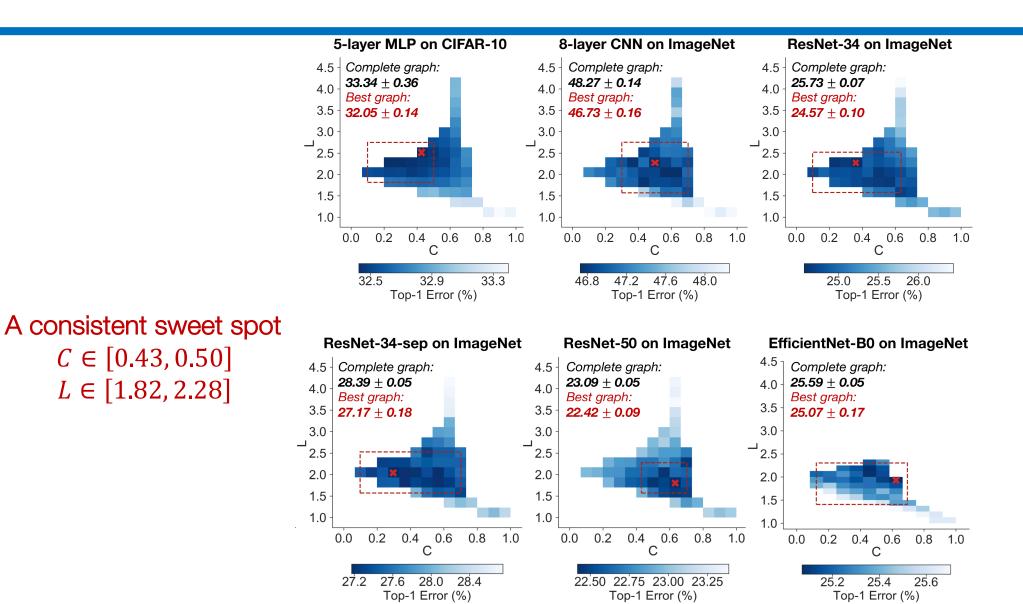
5-layer MLP on CIFAR-10



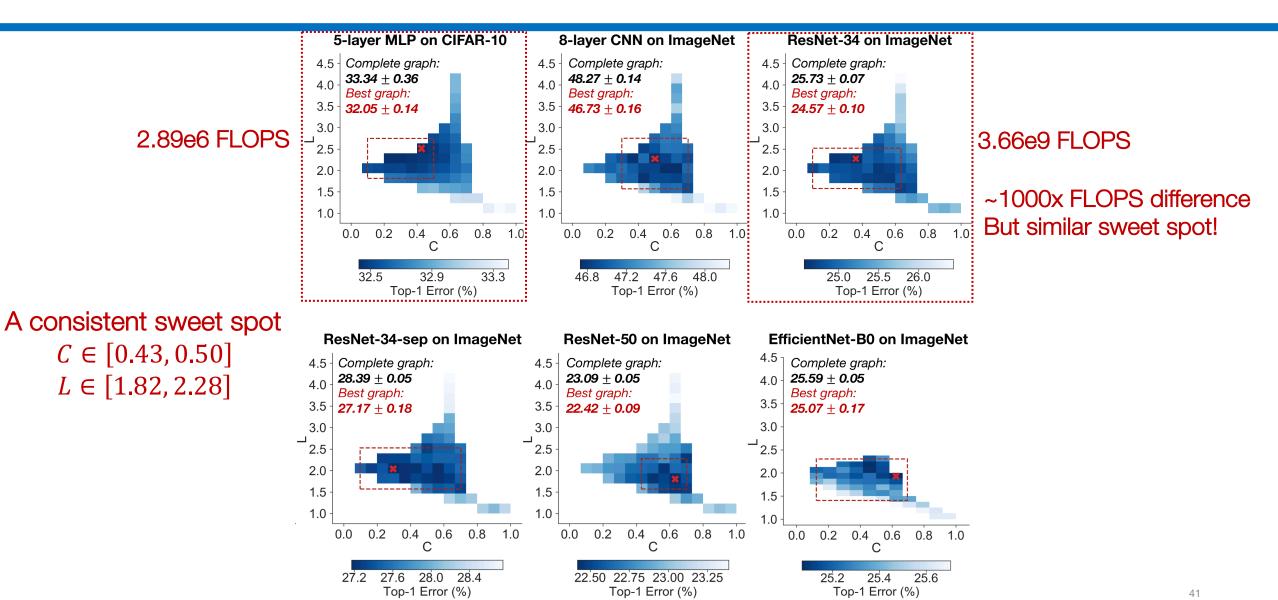
5-layer MLP on CIFAR-10

J. You, J. Leskovec, K. He, S. Xie, Graph Structure of Neural Networks, ICML 2020

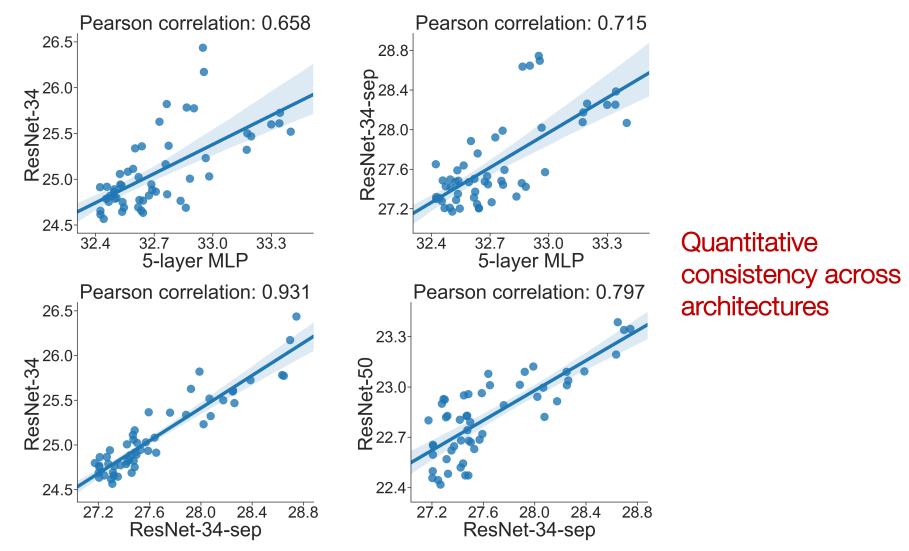
Finding 1: Consistent Sweet Spot for Top NNs



Finding 1: Consistent Sweet Spot for Top NNs



Finding 1: Consistent Sweet Spot for Top NNs

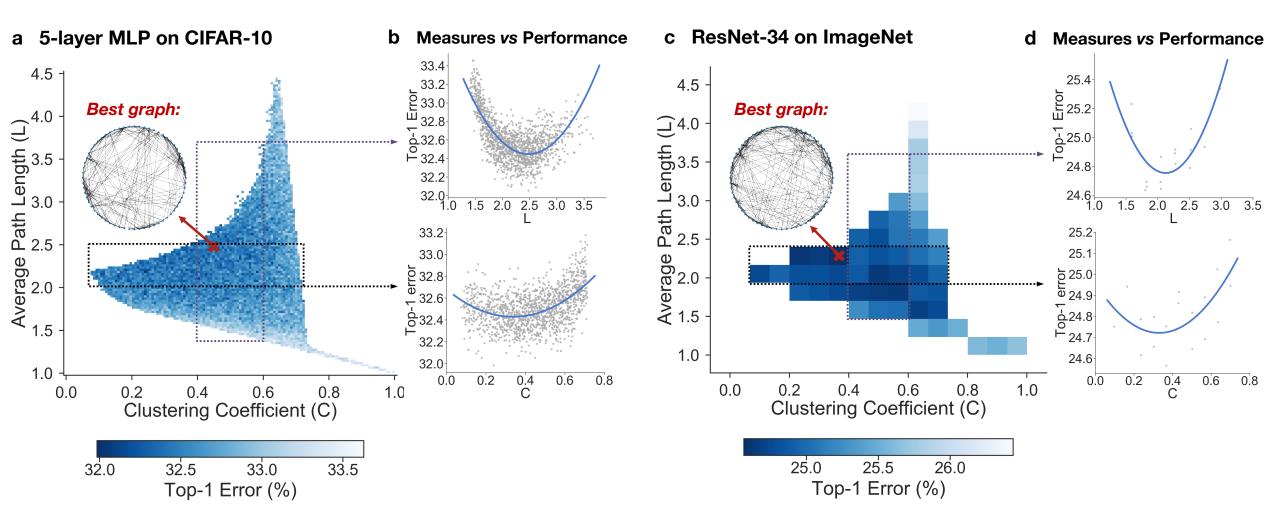


J. You, J. Leskovec, K. He, S. Xie, Graph Structure of Neural Networks, ICML 2020

Overview: Findings

- Finding 1: Consistent Sweet Spot for top NNs across architectures
- Finding 2: NN Performance as a smooth function over graph measures
- Finding 3: Sweet spot can be quickly identified
- Finding 4: Top artificial NNs are similar to real NNs

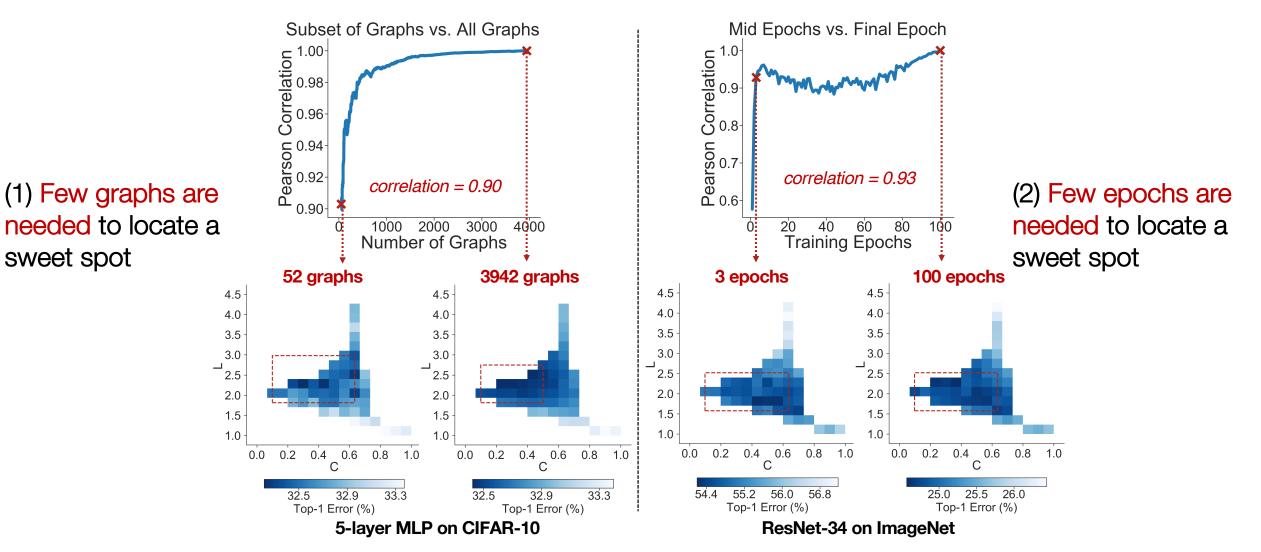
Finding 2: NN performance as a **smooth function** over graph measures



Overview: Findings

- Finding 1: Consistent Sweet Spot for top NNs across architectures
- Finding 2: NN Performance as a smooth function over graph measures
- Finding 3: Sweet spot can be quickly identified
- Finding 4: Top artificial NNs are similar to real NNs

Finding 3: Sweet spot can be quickly identified



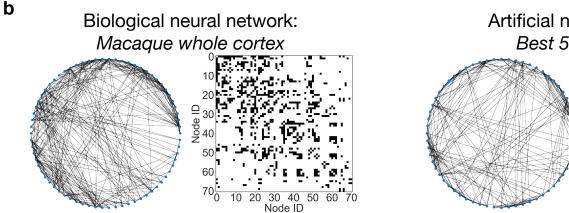
Overview: Findings

- Finding 1: Consistent Sweet Spot for top NNs across architectures
- Finding 2: NN Performance as a smooth function over graph measures
- Finding 3: Sweet spot can be quickly identified
- Finding 4: Top artificial NNs are similar to real NNs

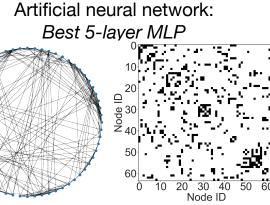
Finding 4: Top artificial NNs are similar to real NNs

Graph	Path (L)	Clustering (C)	CIFAR-10 Error (%)
Complete graph	1.00	1.00	33.34 ± 0.36
Cat cortex	1.81	0.55	33.01 ± 0.22
Macaque visual cortex	1.73	0.53	32.78 ± 0.21
Macaque whole cortex	2.38	0.46	32.77 ± 0.14
Consistent sweet spot across neural architectures	1.82-2.28	0.43-0.50	32.50 ± 0.33
Best 5-layer MLP	2.48	0.45	32.05 ± 0.14

(1) Best graphs we found are similar to biological neural networks



а

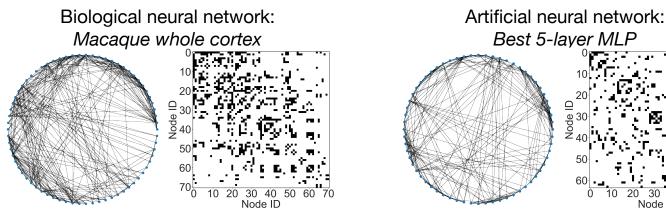


Finding 4: Top artificial NNs are similar to real NNs

Graph	Path (L)	Clustering (C)	CIFAR-10 Error (%)
Complete graph	1.00	1.00	33.34 ± 0.36
Cat cortex	1.81	0.55	33.01 ± 0.22
Macaque visual cortex	1.73	0.53	32.78 ± 0.21
Macaque whole cortex	2.38	0.46	32.77 ± 0.14
Consistent sweet spot across neural architectures	1.82-2.28	0.43-0.50	32.50 ± 0.33
Best 5-layer MLP	2.48	0.45	32.05 ± 0.14

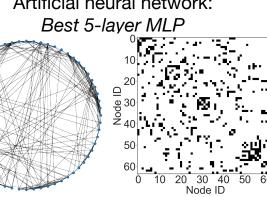
(2) Translate biological networks to MLP yields good performance

(1) Best graphs we found are similar to biological neural networks



а

b



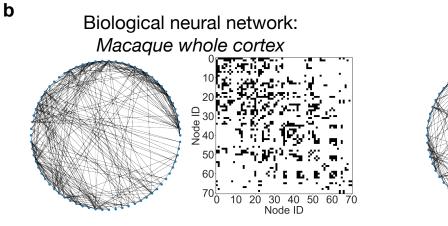
Finding 4: Top artificial NNs are similar to real NNs

Graph	Path (L)	Clustering (C)	CIFAR-10 Error (%)
Complete graph	1.00	1.00	33.34 ± 0.36
Cat cortex	1.81	0.55	33.01 ± 0.22
Macaque visual cortex	1.73	0.53	32.78 ± 0.21
Macaque whole cortex	2.38	0.46	32.77 ± 0.14
Consistent sweet spot across neural architectures	1.82-2.28	0.43-0.50	32.50 ± 0.33
Best 5-layer MLP	2.48	0.45	32.05 ± 0.14

(2) Translate biological networks to MLP yields good performance

(1) Best graphs we found are similar to biological neural networks

More advanced bio networks \rightarrow better performed deep networks?

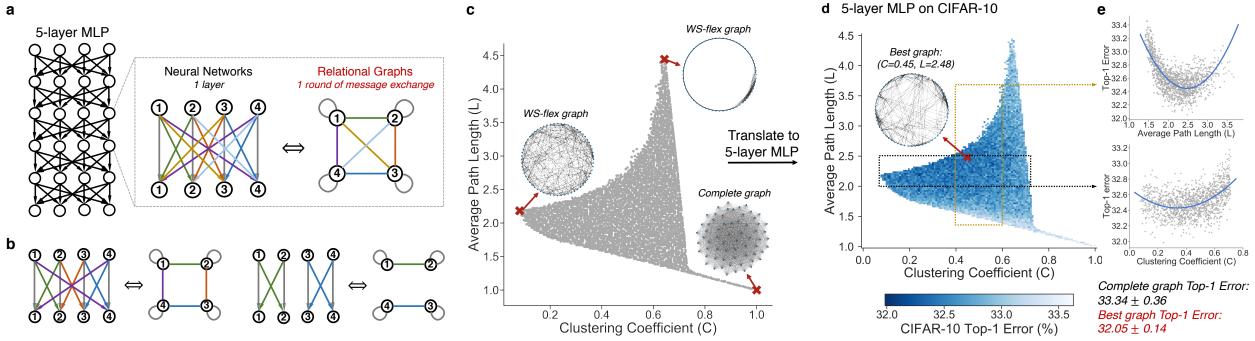


а

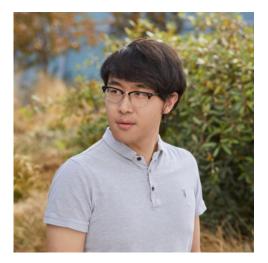
Artificial neural network: Best 5-layer MLP

Conclusions

- A new transition from studying conventional computation architecture to studying graph structure of neural networks.
- Well-established methodologies from network science and neuroscience could contribute to understanding and designing deep neural networks.



Graph Structure of Neural Networks



Jiaxuan You

Jure Leskovec

Kaiming He

Saining Xie

FACEBOOK