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Neural networks consist of neurons 
We know connections between neurons affect NN performance
But how?
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Underneath a NN, there is a graph
We want to find a proper graph representation of NN to answer:
Is there a link between the graph structure and NN performance? 
If so, what are structural signatures of well-performing NNs?
Can these signatures generalize across tasks and datasets?
…
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Overview: Methodology
§ A novel representation of neural networks: relational graphs

§ Relational graphs can represent diverse neural architectures

§ Tools from network science à Graph structure vs NN performance
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Overview: Key Findings

§ Consistent “Sweet Spot” for top NNs across architectures

§ Top artificial NNs are similar to real biological NNs
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• Graphs with certain structure 
measures consistently performs well 
(controlling computational budgets)

• Graph structure of the best 5-layer 
MLP we found, is similar to the 
macaque whole cortex network

Complete graph: 
25.73 ± 0.07
Best graph: 
24.57 ± 0.10

ResNet-34 on ImageNet5-layer MLP on CIFAR-10
Complete graph: 
33.34 ± 0.36
Best graph: 
32.05 ± 0.14

8-layer CNN on ImageNet
Complete graph: 
48.27 ± 0.14
Best graph: 
46.73 ± 0.16



Overview: Methodology

§ A novel representation of neural networks: relational graphs ß
§ Computational vs. Relational graphs
§ Neural computation as message exchange on relational graphs

§ Relational graphs can represent diverse neural architectures

§ Tools from network science à Graph structure vs NN performance
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Background: NNs as Computational Graphs
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Background: Related Work
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RandWire, Xie et al., 2019Deep Expander Networks, Prabhu et al., 2018

Existing graph-based architecture design approaches focus on computational graphs

NAS-Bench-101, Ying et al., 2019

Generate bipartite
graphs over neurons

Generate directed 
acyclic graphs
over NN layers



Limitations: NNs as Computational Graphs
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Limitations:
• Lack of flexibility

• Directed acyclic graphs
• Disconnection with neuroscience

• Brain networks have flexible structure
• Bi-directional information exchange



Our Approach: Relational Graphs
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Relational Graphs
1 round of message exchange Relational graph definition:

• Nodes are neurons
• Edges specify (undirected) connectivity 

between neurons;
• Computation is conducted by message 

exchange over the graph structure, where a 
node exchange messages with its neighbors



Our approach: Relational Graphs
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Our approach: Relational Graphs
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Our Approach: Relational Graphs
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Benefits of Relational Graphs
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Relational Graphs
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Benefits:
• Flexibility

• No restrictions on graph structure 
(we focus on undirected graph)

• Connections with neuroscience
• Bi-directional information exchange

Biological neural network:
Macaque whole cortex

Artificial neural network:
Best 5-layer MLP



Diverse Relational Graphs
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Neural Computation as Message Exchange
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Neural Network as Rounds of Message Exchange
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A 5-layer 
Neural network
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A relational graph with
5 rounds of message exchange

⟺

This is how Graph Neural Networks 
compute embeddings!



Side Note: Connections with GNNs
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𝐴𝐺𝐺(⋅) 𝐴𝐺𝐺(⋅) This is how Graph Neural Networks 
compute embeddings!

Specialty of GNNs:

(1) Graph structure is regarded as the input 
instead of neural architecture; 

(2) Message functions are shared across 
all the edges to respect input graph’s 
invariance properties. 



Overview: Methodology

§ A novel representation of neural networks: relational graphs

§ Relational graphs can represent diverse neural architectures ß
§ Can represent architectures from MLP to ResNet

§ Tools from network science à Graph structure vs NN performance
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Relational Graphs à Diverse Architectures
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4 Key components

Relational Graph

The same relational graph à diverse architectures



Relational Graphs à Diverse Architectures
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Relational Graphs à Diverse Architectures
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Relational Graphs à Diverse Architectures
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Relational Graphs à Diverse Architectures
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Overview

§ A novel representation of neural networks: relational graphs

§ Relational graphs can represent diverse neural architectures

§ Network science à Graph structure vs NN performance ß
§ Graph measures that characterize graph properties
§ Graph generators that generate diverse graphs
§ Control computational budget
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Measuring Graph Structure
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𝐿 = 2.3
𝐶 = 0

𝐿 = 1.4
𝐶 = 0.5

𝐿 = 2.0
𝐶 = 0.1

§ Graph measures:
§ Global: average path length (𝐿)

The average shortest path distance between any pair of nodes 
§ Local: clustering coefficient (𝐶)

A measure of the degree to which nodes in a graph tend to cluster together



Generating Diverse Graphs

§ WS-flex graphs have a much better coverage
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Classic families of graphs Proposed WS-flex graphs



Generating Diverse Graphs

§ Visualization of WS-flex graphs
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We Control Computational Budget
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Experimental Setup

§ 5-layer 512-dim MLPs on CIFAR-10
§ 3942 graphs, results averaged over 5 seeds

§ CNNs & ResNet families & EfficientNet-B0 on ImageNet
§ 52 graphs per experiment, results averaged over 3 seeds

§ Computational budgets in all experiments are controlled
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Overview: Findings

§ Finding 1: Consistent Sweet Spot for top NNs across architectures

§ Finding 2: NN Performance as a smooth function over graph measures

§ Finding 3: Sweet spot can be quickly identified 

§ Finding 4: Top artificial NNs are similar to real NNs
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Finding 1: Sweet Spot for Top NNs
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Translate to 
5-layer MLP

Complete graph

WS-flex graph

WS-flex graph
Best graph:

(n=64, k=8.19, p=0.13)

Complete graph Top-1 Error: 
33.34 ± 0.36
Best graph Top-1 Error: 
32.05± 0.14



Finding 1: Sweet Spot for Top NNs
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Best graph:
(n=64, k=8.19, p=0.13)

Best bin of 
graphsBinning over 

the results

5-layer MLP on CIFAR-10



Finding 1: Sweet Spot for Top NNs
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Best graph:
(n=64, k=8.19, p=0.13)

Not significantly worse
p-value > 0.05

significantly worse
p-value < 0.05

Best bin of 
graphsBinning over 

the results

5-layer MLP on CIFAR-10

Use t-test to statistically 
compare performance of all 

the bins vs. the best bin



Finding 1: Sweet Spot for Top NNs
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Best graph:
(n=64, k=8.19, p=0.13)

Not significantly worse
p-value > 0.05

significantly worse
p-value < 0.05

Best bin of 
graphs

“Sweet spot”

Binning over 
the results

5-layer MLP on CIFAR-10

Use t-test to statistically 
compare performance of all 

the bins vs. the best bin



Finding 1: Consistent Sweet Spot for Top NNs
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A consistent sweet spot
𝐶 ∈ 0.43, 0.50
𝐿 ∈ 1.82, 2.28

Complete graph: 
25.73 ± 0.07
Best graph: 
24.57 ± 0.10

ResNet-34 on ImageNet5-layer MLP on CIFAR-10
Complete graph: 
33.34 ± 0.36
Best graph: 
32.05 ± 0.14

8-layer CNN on ImageNet
Complete graph: 
48.27 ± 0.14
Best graph: 
46.73 ± 0.16



Complete graph: 
25.73 ± 0.07
Best graph: 
24.57 ± 0.10
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Complete graph: 
33.34 ± 0.36
Best graph: 
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Finding 1: Consistent Sweet Spot for Top NNs
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2.89e6 FLOPS 3.66e9 FLOPS 

~1000x FLOPS difference
But similar sweet spot!

A consistent sweet spot
𝐶 ∈ 0.43, 0.50
𝐿 ∈ 1.82, 2.28



Finding 1: Consistent Sweet Spot for Top NNs
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Quantitative 
consistency across 
architectures



Overview: Findings

§ Finding 1: Consistent Sweet Spot for top NNs across architectures

§ Finding 2: NN Performance as a smooth function over graph measures

§ Finding 3: Sweet spot can be quickly identified 

§ Finding 4: Top artificial NNs are similar to real NNs
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Finding 2: NN performance
as a smooth function over graph measures

Best graph: Best graph:

a   5-layer MLP on CIFAR-10 c   ResNet-34 on ImageNetb   Measures vs Performance d   Measures vs Performance 



Overview: Findings

§ Finding 1: Consistent Sweet Spot for top NNs across architectures

§ Finding 2: NN Performance as a smooth function over graph measures

§ Finding 3: Sweet spot can be quickly identified 

§ Finding 4: Top artificial NNs are similar to real NNs
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correlation = 0.90 correlation = 0.93

52 graphs 100 epochs3 epochs

5-layer MLP on CIFAR-10

3942 graphs

ResNet-34 on ImageNet

Finding 3: Sweet spot can be quickly identified  
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(1) Few graphs are 
needed to locate a 
sweet spot

(2) Few epochs are 
needed to locate a 
sweet spot



Overview: Findings

§ Finding 1: Consistent Sweet Spot for top NNs across architectures

§ Finding 2: NN Performance as a smooth function over graph measures

§ Finding 3: Sweet spot can be quickly identified 

§ Finding 4: Top artificial NNs are similar to real NNs
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Finding 4: Top artificial NNs are similar to real NNs
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b

a

Biological neural network:
Macaque whole cortex

Artificial neural network:
Best 5-layer MLP

(1) Best graphs we found are similar 
to biological neural networks



Finding 4: Top artificial NNs are similar to real NNs
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b

a

Biological neural network:
Macaque whole cortex

Artificial neural network:
Best 5-layer MLP

(1) Best graphs we found are similar 
to biological neural networks

(2) Translate biological 
networks to MLP yields 
good performance



Finding 4: Top artificial NNs are similar to real NNs
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b

a

Biological neural network:
Macaque whole cortex

Artificial neural network:
Best 5-layer MLP

(1) Best graphs we found are similar 
to biological neural networks

(2) Translate biological 
networks to MLP yields 
good performance

More advanced bio networks à
better performed deep networks?



Conclusions
§ A new transition from studying conventional computation architecture to 

studying graph structure of neural networks. 
§ Well-established methodologies from network science and neuroscience 

could contribute to understanding and designing deep neural networks. 
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Graph Structure of Neural Networks
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