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Abstract—Metro systems are playing an increasing role in 

modern cities, and various management solutions are proposed 

to improve their efficiency. When analyzing the effects of those 

solutions, simulation proves to be an effective and cost-saving 

method. This paper presents an effective simulation model for 

multi-line metro systems based on the OD (origin-destination) 

data and the network connection data. The model is validated in 

the scenario of Beijing metro system, which proves its 

effectiveness in large-scale empirical implementation. We 

further apply our model in analyzing the policy of staggered 

shifts, and prove the convenience of its application. 

I. INTRODUCTION 

Due to the rapid development of urbanization, urban 
residents suffer from more and more serious traffic congestion. 
Thus, metro systems are playing an increasing role in urban 
transportation, owing to its congestion free properties. To 
improve the operating efficiency and service level of metro 
systems, various management solutions and policies were 
proposed and examined. However, the high cost of field test 
and the possible risk of system failure may hinder us from 
carrying out a real-time experiment. Therefore, implementing 
simulation method would be more cost-saving and effective 
[1-2]. 

In fact, metro scenario based simulation methods were 
applied in a wide range.  However, many studies are faced 
with the following three problems. 

The first problem is that few studies propose an explicit 
framework for metro systems. In [3],  a multi-agent system 
was proposed, where environment, passenger agent and train 
agent were defined. However, the work did not explicitly 
reveal the structure behind each agent and the interaction 
between them. Heimburger et al. proposed a framework 
incorporating important train and passenger variables, yet was 
limited to single-line metro systems [4]. 

The second problem is that they try to precisely reproduce 
the operation status of metro systems, yet the involved 
parameters are hard to obtain. Sun et al. [5] established a 
metro simulation model, with exact train schedule parameters 
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involved. In [2], the metro system simulator set up many train 
parameters including speed, weight and etc. A comprehensive 
model in [6] also included train occupancy data which had to 
be acquired by special circuit. The commonly faced problem 
is that those train parameters are hard to acquire in reality, 
which makes validation with empirical data challenging.  

The third problem is that many studies do not consider the 
decision making of passengers. The simulator in [2] did not 
differentiate between passengers, and assumed that all 
passengers are distributed according to the probability in the 
OD matrix. However, each passenger may choose a different 
route according to his destination and the generalized travel 
cost for each possible path. Therefore, omitting the decision 
making of passengers deviates from reality. 

To sum up, current metro simulation models lack an 
explicit framework and incorporate hard-to-obtain parameters, 
while many of them do not take the decision making of 
passengers into account. When facing large-scale empirical 
implementation, current metro simulation models are 
restricted by the above drawbacks. Thus, many studies only 
examine their models in a single metro line [1] and lack 
overall examination on its results [3]. 

To overcome the above-mentioned problems, this paper 
presents a hierarchical, empirical and adaptive simulation 
model for multi-line metro systems. The proposed model has 
the following three characteristics.  

First, it has three hierarchical layers that are explicitly 
described. In addition, we use the graph structure to store most 
information, which facilitates the further implementation of 
algorithms. 

Second, the model utilizes easily available data including 
the OD data and the network connection data. We successfully 
apply our model in the scenario of Beijing metro system and 
prove the effectiveness of the model. 

Third, our model is adaptive in formulating the travel 
preferences of passengers. The model can describe various 
travel preferences of passenger, by simply altering the 
parameters in the formulation of generalized travel cost and 
choosing an appropriate path choice algorithm. Those travel 
preferences can be mined from the smart card data if needed 
[7]. 

The remaining of the paper is outlined as follows. In 
Section 2, the theoretical framework for our model is proposed. 
Section 3 builds the model with empirical data and verifies the 
effectiveness of the model. Section 4 proposes the potential 
application of the model. Conclusions are made and discussed 
in Section 5 finally. 

An Effective Simulation Model for Multi-line Metro Systems Based 

on Origin-destination Data 

Jiaxuan You, Wei Guo, Yi Zhang, Jianming Hu 



  

II. THEORETICAL FRAMEWORK 

In this section, we propose a hierarchical simulation model 
which includes three layers, i.e. infrastructure layer, passenger 
layer and operation layer. Each layer is built on the output of 
the previous layer. The input data can be categorized into the 
network connection data and the OD data. The network 
connection data is imported into the infrastructure layer, and is 
then saved using the graph structure. The passenger layer 
takes attributes of stations and paths provided by the 
infrastructure layer, together with the OD data, to formulate 
the decision making process of passengers. Built on the basis 
of previous layers, the operation layer treats passengers as 
entities with planned path, and simulates the real 
transportation process. The overall structure of the model is 
shown in Fig. 1.  
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Figure 1.  Overall structure of the metro system simulation model 

For presentation simplicity, the symbols and notations are 
enumerated in Table I below. 

TABLE I.  NOMENCLATURE LIST OF THE METRO SIMULATION MODEL 

Parameters Interpretations 

The symbols below are variables of the infrastructure layer 

iID
 

ID for station i  

iLine
 

The line that station i  belongs to 

e

it  
Entrance time for station i  

s

it  
Train stop time for station i  

x

it  
Exit time for station i  

t

jt
 

Expected travel time for path j  

t

jt
 

Real travel time for path j  

b

jt
 

Transfer boarding time for transfer path j  

jc
 

Capacity for each train in path j  

jh
 

Headway for each train in path j  

jM
 

Maximum capability for transportation in path j  

jN
 

Current passenger number in path j  

The symbols below are variables of the passenger layer 

k

ijV  Generalized travel cost for the k th travel path from 

station i  to station j  
k

ijT  Total travel time cost for the k th travel path from 

station i  to station j  

k

ijC  Total comfort cost for the k th travel path from 

station i  to station j  
k

ijE  Total travel expense cost for the k th travel path from 

station i  to station j  
k

ijP  The set of paths that constitute the k th travel path 

from station i  to station j  

  Transform coefficient of total transfer time 

  
Transform coefficient of the number of times for 
transferring 

k

ijU  Total travel utility for the k th path station i  to 

station j  
k

ijp  The probability for a passenger to select the k th path 

from station i  to station j  

The symbols below are variables of the operation layer 

TTL  Time to live for the entity in current path 

N  Number of passengers in the entity 

theoreticalT
 

Theoretical total travel time for the entity 

realT
 

Real travel time for the entity 

L  Planned path for the entity. 

Station  Used in the algorithm when traversing all stations 

Entity  Used in the algorithm when traversing all entities 

Path  Used in the algorithm when traversing all paths 

nextPath
 

The path to be entered for an entity 

 

A. Infrastructure Layer 

The infrastructure layer builds the basic structure for a 
metro system which consists of stations and paths, and stores 
all the network connection data. The whole layer is built on the 
graph structure. Therefore, it is convenient for applying 
further path choice algorithm, such as the shortest path 
algorithm. In the graph structure, each node contains 

information related to stations, including 
iID , 

iLine , entrance 

time 
e

it , stop time 
s

it  and exit time 
x

it . Meanwhile, each arc 

represents information related to paths, including expect travel 

time t

jt , real travel time 
t

jt  and maximum capacity jM . 

Notice that the transfer information has not been stored in 
the graph. Thus, we perform a special procedure, called 
remapping, over all the stations. Normally, each transfer 
station is viewed as a single station. In the remapping 
procedure, each transfer station is divided into different 
stations, and the transfer information can be stored in arcs 
between remapped stations. Fig. 2 illustrates the effect of 
remapping. Notice that the station with 2ID   is now 
remapped into stations with 2ID   and 3ID  , and network 

connection is therefore changed. 
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Figure 2.  An illustrative example of the remapping process 



  

We then need to calculate real travel time t

jt . To consider 

different scenarios, we categorize arcs into normal arcs and 
transfer arcs. Arcs between two metro stops are defined as 
normal arcs, while arcs between remapped transfer stations are 
defined as transfer arcs. Two types of arcs model the trip on 
train and the trip in transfer station individually, and are 
depicted in Fig. 3. 

 

ID=1
Line=1       

ID=2
Line=1       

ID=3
Line=2       

ID=6
Line=2       

ID=5
Line=2       

ID=4
Line=1       

Transfer 
arc

Normal 
arc

 

Figure 3.  Two types of arcs in the simulation model 

For normal arc, we assume that trains are on schedule. 
Thus, the real travel time is the expected travel time, which 
can be described as 

 t t

j jt t  (1) 

For transfer arc, the real travel time is the sum of transfer 
walking time and transfer boarding time, which can be written 
as 

 
= +t

j j

b

j

tt t t   (2)
 

where t

jt  reflects the average transfer walking time which can 

be obtained from empirical data. The transfer boarding time 
b

jt  is estimated as half of the headway in many studies [8]. 

However, such an approximation fails to reflect the queuing 
phenomenon in peak hours.  

To solve this problem, we assume that each normal arc has 
a maximum capability for carrying passengers. The capability 

for transportation jM  for a normal arc is defined as follows. 

 
t

j j

j

j

c t
M

h
  (3)

 

A normal arc is defined as overloaded, if current passenger 

number jN  exceeds jM . If the arc to board is overloaded, a 

passenger will wait until the arc has enough space, which 
simulates passengers waiting on the platform in peak hours. 
The corresponding algorithm will be discussed in the 
operation layer.  

C. Passenger Layer 

The passenger layer mainly formulates the decision 
making process of the passengers. We first formulate the cost 
for all potential travel paths, then apply algorithms to select 
the desired travel path for each passenger. 

The generalized travel cost is proposed to model the cost 
of travel, which is a typical method adopted by many studies 

[3]. In metro system, The generalized travel cost k

ijV  can be 

written as the sum of time cost k

ijT , comfort cost k

ijC  and 

travel expense cost k

ijE , where k

ijC  and k

ijE  has been 

transformed into the unit of time: 

 
+k k k k

ij ij ij ijV C ET    (4)
 

For a typical trip, time cost consists of station entrance 

time 
e

it  , real travel time t

jt , train stop time 
s

it  and station exit 

time 
x

it . The information can be obtained from the 

infrastructure layer. k

ijP  denotes the set of arcs that constitute 

the k th travel path from station i  to station j .  

 
k

ij

k e t

p

p P

x

ij i jT t t t


     (5)
 

Comfort cost is typically determined by the congestion 
status on the train and the transfer activity between lines. In 
our model, we assume that the congestion status on each train 
is similar, given any specific time. Thus, we use transfer 
activity to formulate the comfort cost. A study conducted in [9] 
shows that the cost of transfer activity can be viewed as a 
linear function of total transfer time and the number of times 
for transferring. The equation can be shown as follows, where 

  and   transform the unit of comfort cost into time. 

 

ij

c

m

m T

k

ij ijC t n 


    (6)
 

Travel expense cost is fixed for a given origin-destination 
pair, considering the fair policy in most metro systems. 
Therefore, this term will not affect the selection of path for 
passengers. 

For path choice decision, two models are commonly used. 
The first model assumes the absolute rationality of passengers. 
It implements the shortest path algorithm and found the 
optimal solution. Although it slightly deviates from reality, it 
can be viewed as an adequate estimation. The second model 
assumes that passengers choose among possible paths based 
on probability, which is determined by the cost of that path. It 
better describes the behavior of passengers, and is adopted in 
our model. 

We first implement the KSP (K shortest paths) algorithm 
to provide first K possible paths that minimize the generalized 
travel cost. The utility of a given path is in negative 
relationship with the cost, which is described as follows 

 1k

ij k

ij

U
V

   (7)
 

Then the probability of choosing the k th path among K 

possible paths can be written as follows. 

 

1

exp( )

exp( )

k

ijk

ij
k

i

K

k

j

U
p

U





  (8)

 

D. Operation Layer 

The operation layer simulates the real transport operation, 
which is built on the basis of the passenger layer and the 
infrastructure layer. This layer will carry out real-time 



  

simulation, and provide outputs including transfer passenger 
flow, exit passenger flow and etc. 

The operation layer mainly has three functions: packing 
passengers into entities with their path choice, accepting 
entities from stations and transporting entities through paths. 
The layer will update on each simulation step. 

In each simulation step, the operation layer first packs each 
group of departure passengers into entities. Each entity is 
defined to include the following information: Time to live in 
current path TTL , number of passengers N , theoretical total 

travel time 
theoreticalT , real total travel time 

realT , planned path 

L .Those entities are stored in stations, waiting for the 
acceptance of operation layer. 

Entities are then accepted by the operation layer, and are 
stored in paths. The algorithm can be shown in Table II. 

TABLE II.  THE ALGORITHM FOR ACCEPTING ENTITIES 

Algorithm 1    Accepting entities 

Foreach Station   

 Foreach Entity   

   1. If nextPath  has enough space, then 

     i. Copy Entity  into nextPath , set TTL  as the expected travel time 

t

jt  of nextPath  

     ii. Delete Entity  in Station  

   2. If nextPath  will be overloaded if Entity  is to be accepted, then 

     i. Skip Entity  

   3. Update the number of entities of nextPath , increase the real travel 

time for all the entities by a simulation step 
 EndFor 
EndFor 

 

Entities are then transported within the operation layer, 
based on the following algorithm in Table III. 

TABLE III.  THE ALGORITHM FOR TRANSPORTING ENTITIES 

Algorithm 2    Transporting entities 

Foreach Path   

 Foreach Entity   

   1. If 0TTL  , then 

      a) If nextPath  is null, i.e. Entity  is to exit the metro system, then 

         i. Collect the information of  Entity  

         ii. Delete Entity  in the Path  

      b) If Path  is a transfer path, and nextPath  will be overloaded if 

Entity  is to be accepted, then 

         i. Skip Entity  

      c) else 

         i. Copy Entity  into nextPath , set the new TTL  as the expected 

travel time 
t

jt  of that path 

         ii. Delete Entity   in Path  

    2. If 0TTL  , then 

       Decrease TTL  by a simulation step 

    3. Update the number of entities of nextPath , increase the real travel 

time for all the entities by a simulation step 
 EndFor 
EndFor 

 

III. EMPIRICAL VERIFICATION 

In this section, we examined our simulation model in a 
typical scenario of Beijing metro system. We verify our model 
based on the real exit passenger flow data, which is 
independent from model input. 

The input data are collected on January 9th, 2013. The 
metro system includes 14 lines and 220 stations. The 
simulation model is programmed on MATLAB platform. The 
sketch map for Beijing metro system is depicted in Fig. 4. 

 

Figure 4.  The sketch map for Beijing metro system on January 9th, 2013 

Input data includes the OD data and the network 
connection data, which are obtained from the official source of 
Beijing metro system. The OD data records the origin, 
destination and departure time of each passenger. The network 
connection data includes connection state between stations, 
average travel time between stations, average transfer time, 
station entrance time and station exit time. Model parameters 
are set according to [10], and is finally adjusted as 1.5   

and 3min  by grid search based on the model performance. 

Besides, we simplify the KSP algorithm by applying the 
shortest path algorithm to save computational cost.  

Many outputs can be obtained from our simulation model. 
Macro statistics including the exit passenger flow, the transfer 
passenger flow and the section passenger flow can be obtained. 
Micro statistics such as the real travel time for each passengers 
can also be collected.  

Statistics listed above are hard to collect in reality, except 
for the exit passenger flow. Thus, real value of the exit 
passenger flow, provided by Beijing Metro Network Control 
Center, is compared with the simulation value for the purpose 
of verification. The real value of the exit passenger flow is 
collected in each station, and is independent from the OD data 
used as our model input. Note that the collecting method of 
exit passenger flow is different from the OD data, and for 
some newly built stations the deviation can be great. The 
simulation results show that the proposed model can provide 
high performance, with an average error rate less than 8.8%. 
The average exit flow from all the stations is depicted in Fig. 5 
and Fig. 6. 



  

 

Figure 5.  The average exit flow from all stations 

 

Figure 6.  The relative error of the average exit flow from all stations 

Relatively mean error (RME) is used to further reveal the 
spatial and temporal bias of our model output. Suppose there 

are S  stations and T  time periods, 
t

sn  and 
t

sn  denotes the 

real and simulated exit flow of station s  in time t  

respectively. Then the (t)SRME (RME for all stations) and the 

(s)TRME (RME for all time periods) is defined as follows. 

 

1

1
(t)

t
S s

t

S

s

s

t

s

n n
RME

S n


    (9) 

 

1

1
(s)

t
T s

t

T

t

s

t

s

n n
RME

T n


    (10) 

The (t)SRME  shows that our model exhibits higher bias 

in peak hours, around 6:00 to 9:00 and 19:00 to 22:00. An 
explanation is that the congestion in peak hours prolongs the 
train stop time and passenger walking time, thus delay the exit 
of passengers. The delay in peak hours is support in Fig. 6, 
where the simulated exit flow has a negative bias before peak 

times and has a positive bias after peak times. The (s)TRME  

shows that higher bias exists on stations with ID higher than 
100. Those stations are typically newly built suburban stations 
and have less passenger flow, which is more random and may 
account for the high bias. We can adjust the bias in peak hours 
in further application, and smooth the randomness in suburban 
stations by using the OD data in more days. 

 

Figure 7.  Simulated results for (t)SRME  

 

Figure 8.  Simulated results for (s)TRME  

IV. APPLICATION 

To alleviate the congestion level in peak hours, a policy of 
staggered shifts is commonly carried out. However, the 
quantitative effect of the policy on metro systems is hard to 
analyze. Instead of carrying out field test, we can use our 
metro simulation model to give a numerical analysis for its 
effect, which is convenient and cost-saving. 

The scenario is simplified as follows. Suppose the central 
business district (CBD) in Beijing delays its office hour for 
one hour. We then assume that the departure time for 
commuters whose destination is GuoMao, the center of CBD, 
is delayed for one hour. The effect can be formulated by 
altering the OD data. The proportion of commuters is defined 
as  , which is set as 0.8   in our scenario. The change 

should only take effect in peak hours, which is set from 6am to 
10am. To examine the effect of this policy, we analyze the exit 
flow from GuoMao. In addition, the transfer flow of nearby 
transfer stations is also discussed, including JianGuomen and 
DongDan. Their relationship is shown in Fig. 9.  
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Figure 9.  The spatial relationship of GuoMao, JianGuomen and DongDan 



  

We compare the statistics before and after adjusting office 
hour. The peak of exit passenger flow of GuoMao is delayed 
and reduced as expected, which is shown in Fig. 10. In 
addition, the pressure for nearby transfer stations is also 
relieved, and our model is able to yield a quantitative 
prediction, shown in Fig. 11 and Fig. 12. It is shown that the 
nearer the transfer station is, the greater the effect is. 

 

Figure 10.  The exit passenger flow of GuoMao before and after adjusted 

 

Figure 11.  The transfer passenger flow of JianGuomen before and after 

adjusted 

 

Figure 12.  The transfer passenger flow of DongDan before and after adjusted 

V. CONCLUSION 

This article presents a hierarchical, empirical and adaptive 
simulation model for multi-line metro systems. Its 

performance is validated by real data from Beijing metro 
system. Our work shows that 

 The proposed three layer framework can explicitly 
describe the operation of metro systems and adapt 
various settings. 

 By only using the OD data and the network connection 
data, our model can carry out effective simulation, even 
in large-scale systems such as Beijing metro system. 

 Our model can serve as a convenient tool for analyzing 
the effect of management policies on metro systems. 
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