Introduction to
Graph Neural Networks

Many Types of Data are Graphs

Spock Science Fiction Obi-Wan Kenobi gk wn IV Z-a= & &
TaAZD R
P N @
§ 3 > Ei /sl
3B \ ke
odien e b ,:Nlﬂwlm‘:. CDat HIRCY ‘sutzons S
ope ok i RESS PR &
RS 7 | i o AT FIACH 3 v, &
played characterln genre genre characterIn played oSG ol Al AL PU.. Y @257
o X L Tty ¥ S
/ s
ol ——@h A 4 ks GIRCZ conkzer (9088 /SR 24 A 8.
9T " Y HPGD
starredIn ‘ starredIn & B\ Bl o,
D o \ P &
Leonard Nimoy Star Trek Star Wars Alec Guinness w4 b6
g FGFI2 i
g . 2 >

Knowledge Graphs Regulatory Networks

y AN o
1 bir
LT
H \ S
i i ™
1 1 "\
(VM) y ¥ y NH,
\ IB.vMethod() ‘ IC.vMethod() |
\ c c
static {} ‘\‘ %13 @:17
c
&3 e /
N, " - ¥ 4
e e N P.
S N P
. Y -7
.4 \ g

Code Graphs Molecules

8/24/21

https://arxiv.org/abs/1503.00759
https://en.wikipedia.org/wiki/Triangle_mesh
https://www.researchgate.net/figure/Static-call-graph-for-Figure-1-Callsites-are-labeled-with-their-line-number-in-the-code_fig1_220751974
https://www.mdpi.com/2078-2489/1/2/60/htm
http://math.hws.edu/graphicsbook/c2/s4.html
https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html

Many Types of Data are Graphs

,,,,,,

Spock Science Fiction Obi-Wan Kenobi 8 kR saRz

<o
amzk
TGAZD HHEX
#PBP ©e
sbaue atpai / sillka
S \ Lokt
8n LB 540G
= iz X Coas BIRCY “suczam . A
oP2REA
(2
ADANG
Folp ok
e CADTIAA (OACH a4
c WSARTA O
5 Pt GALNT
o ax
P00
AP

played characterln genre genre characterln played O

/ \ | NS 2
starredIn —>

Leonard Nimoy Stai

Know

ma i
Ce22 C@23

H H
! H
/ H
lr’]
/ |
' I

Code Graphs Molecules

8/24/21

https://arxiv.org/abs/1503.00759
https://en.wikipedia.org/wiki/Triangle_mesh
https://www.researchgate.net/figure/Static-call-graph-for-Figure-1-Callsites-are-labeled-with-their-line-number-in-the-code_fig1_220751974
https://www.mdpi.com/2078-2489/1/2/60/htm
http://math.hws.edu/graphicsbook/c2/s4.html
https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html

Networks are complex.
Arbitrary size and complex topological
structure (i.e., no spatial locality like grids)

Text

Networks Images

8/24/21

Learning From Graphs

Node-level
prediction

“What is the area
of this research

Graph-level 4—- paper?”
prediction
“I's this molecular
graph toxic?” :
Edge-level
prediction

“Is this transaction
fraudulent?”

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 5

J.You, R.Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurlPS 2020

Deep Learning Pipeline for Graphs

Input Graph Node
Graph Neural embeddings
Network — —
. ; [l -1 Prediction head X Predictions
] . [lA [l | (Node/edge/graph) | | (Node/edge/graph)
./A .o o o_‘ ./ Loss
P I [l [Label

Forward
—_—

Backward

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 6

https://arxiv.org/pdf/2011.08843.pdf

Key Concept: Node Embeddings

Intuition: Map nodes to d-dimensional embeddings
such that similar nodes in the graph are embedded
close together

... 2,

............ ENC(u)

o o Zv
/ \\’u, encode nodes ‘
S~ /\ ““““““
\/ D s
ENC(v)

original network embedding space

How to learn the encoder function ENC(-)?

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 7

Deep Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions
& &
& &
Activation Q Q
function &
/ >

A,

y
'y

Output: Node embeddings

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 8

Recap: Graph Neural Networks

ldea: Node’s neighborhood defines a
computation graph
i

Determine node Propagate and
computation graph transform information

Learn how to propagate information across the
graph to compute node features

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks

Recap: Aggregate from Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

A
‘/ B «

INPUT GRAPH

Neural networks

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 10

Recap: Aggregate Neighbors

Intuition: Network neighborhood defines a

computation graph
Every node defines a computation .
graph based on its neighborhood! /

INPUT GRAPH
o o i o o
N o o]]]
.%uﬁ % o %mmé. 0 .% ¢. %N o
P o o0 ® o
‘ i “ %,h iﬂ& .%%y i ﬁ ‘y. i %"é ‘& %,‘ﬁ “
% 1A & o Lo = » % Nomep) = % 4 -
ive®® %% Joef e o0 ooo ®eoe o® %o, °®

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 11

A General Perspective on
Graph Neural Networks

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (1)

GNN Layer = Message + Aggregation
* Different instantiations under this perspective
 GCN, GraphSAGE, GAT, ...

— oo

(2) Aggregation

TARGET NODE
A

INPUT GRAPH

GNN Layer 1 FER
: % & (1) Message

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 13

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (2)

Connect GNN layers into a GNN
e Stack layers sequentially
‘/“ * Ways of adding skip connections

— oo

. GNN Layer 1

TARGET NODE

INPUT GRAPH

! o

connectlwty ‘ i ... :

GNN Layer 2 S | »

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 14

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (3)

Idea: Raw input graph # computational graph
| * Graph feature augmentation
‘/“' * Graph structure augmentation

|

TARGET NODE

INPUT GRAPH

% ua o8

ﬁ. ' .b

009°
(4) Graph augmentation

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 15

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (4)

TARGET NODE
A

INPUT GRAPH

How do we train a GNN
* Supervised/Unsupervised
objectives O

« Node/Edge/Graph level ‘
objectives

.b
%m ;:a e '0

®

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 16

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (5)

TARGET NODE
A

INPUT GRAPH

— oo

(2) Aggregation

. GNN Layer 1

% & (1) Message

connectlwty ‘

GNN Layer 2

(4) Graph augmentation

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 17

https://arxiv.org/pdf/2011.08843.pdf

A Single Layer of a GNN

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A GNN Layer

GNN Layer = Message + Aggregation
* Different instantiations under this perspective
 GCN, GraphSAGE, GAT, ...

— oo

(2) Aggregation

TARGET NODE
A

INPUT GRAPH

GNN Layer 1 PR
: & (1) Message

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 19

https://arxiv.org/pdf/2011.08843.pdf

A Single GNN Layer

Compress a set of vectors into a single vector
Two step process:

(1) Message Output node embedding hff)

1
Node v
x BTN

(2) Aggregation

(2) Aggregation 1
& o ¢# (1) Message ‘|: ® 6 ©
o O Input node embedding h{ ™ , h';1)

(from node itself + neighboring nodes)

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 20

Message Computation

Message function: mg) = MSGW (hg_l))

Intuition: Each node will create a message, which will be
sent to other nodes later

Example: A Linear layer mfp = w(l)hg—l)

Multiply node features with weight matrix W)

Node v
TARGE‘l NODE I
4 (2) Aggregation
/ %[:¢ (1) Message
INPUT GRAPH . . .

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 21

Message Aggregation

Intuition: Each node will aggregate the messages from
node v’s neighbors

h’ = AG6® ({m$,u € N(v)})

Example: Sum(-), Mean(-) or Max(-) aggregator
hl = sSum(m®,u e N}

TARGET NODE Node v

l N -

A

/ (2) Aggregation

® on ¢® (1) Message

INPUT GRAPH . ‘ .

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 22

Message Aggregation: Issue

Information from node v itself could get lost

Computation of hl(,l) does not directly depend on hl(,l_l)
Include h,(]l_l) when computing hg)

compute message from node v itself
Usually, a different message computation will be performed

l - l -1
000) - wini™ m{ = BORY ™

After aggregating from neighbors, we can
aggregate the message from node v itself

Via or
Then aggregate from node itself

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 23

A Single GNN Layer

Putting things together:
(1) Message: each node computes a message
m'"” = MSG® (h(l 1)) u € {N(v) U v}
(2) Aggregation: aggregate messages from neighbors
h = AGGW ({ D e N(v)} “))
Adds expressiveness

Often written as g (-): ReLU(+), Sigmoid(-), ...
Can be added to message or aggregation

i

(2) Aggregation

QY mm ¢® (1) Message
® O O

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 24

T. Kipf, M. Welling. , ICLR 2017

Classical GNN Layers: GCN (1)

0 _ 0 EE u
h, ' = W
v =9 IN(v)|
UEN (v)

How to write this as Message + Aggregation?

Message

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 25

https://arxiv.org/pdf/1609.02907.pdf

Classical GNN Layers: GCN (2)

(1=1) i
hi(}l) =0 2 W(l) hu L (2) Aggregation
EN(v) |N(U)| & o ¢o (1) Message
Message:
0,

w(l) hg_l) (In the GCN paper they use a slightly

different normalization)

Each Neighbor: m;,” =

Aggregation:

Sum over messages from neighbors, then apply activation

hl(,l) =0 (Sum ({mg),u € N(v)}))

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 26

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

GNN Layer in Practice

A suggested GNN Layer

4
We can often get better ([Linear
performance by considering a - —
general GNN layer design v
. Transformation ~ Dropout
Concretely, we can include v
. Activation
modern deep learning modules 7
that proved to be useful in many . Attei“"”
domains Aggregation

v

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 27

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

GNN Layer in Practice

Batch Normalization: A suggested GNN Layer

Stabilize neural network training - Li:
ear
. ¥
DrOPOUt' BatchNorm
Prevent overfitting v
. . Transformation - Dropout
Attention/Gating: v
i Activation
Control the importance of a message v
M . _ | Attention
ore. ¥
Any other useful deep learning modules Aggregation

v

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 28

https://arxiv.org/pdf/2011.08843.pdf

S. Loffe, C.Szegedy. , ICML 2015

Batch Normalization

Goal: Stabilize neural networks training

Idea: Given a batch of inputs (node embeddings)
Re-center the node embeddings into zero mean
Re-scale the variance into unit variance

N
1
Input: X € RV*P Step 1: = Nz o
N node embeddings Compute the i=1
mean and variance 1 & i
Trainable Parameters: over N embeddings : o] N;(L =)
y’ B E]:RD ..
Step 2: X Xi,j — |.1]
ij = ——
Output: Y € RV*P o7 + ¢

Normalized node embeddings

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 29

https://arxiv.org/pdf/1502.03167.pdf

Srivastava et al. , JMLR 2014

Dropout

Goal: Regularize a neural net to prevent overfitting.
Idea:

During training: with some probability p, randomly set
neurons to zero (turn off)

During testing: Use all the neurons for computation

Removed neurons

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 30

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_campaign=buffer&utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com

Dropout for GNNs

In GNN, Dropout is applied to the
linear layer in the message function t (2) Aggregation

' i i - e 2 (1) M
A simple message function with linear ¢ 2% "

layer: =

Dropout

ﬁ

Visualization of a linear layer

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 31

Activation (Non-linearity)

Rectified linear unit (RelLU)
ReLU(x;) = max(x;, 0)
Most commonly used
Sigmoid
1
o) = 1+ e Xi
Used only when you want to restrict the
range of your embeddings
Parametric RelLU
PReLU(x;) = max(x;,0) + a;min(x;, 0)
a; is a trainable parameter
Empirically performs better than RelLU

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks

GNN Layer in Practice

Modern deep learning
modules can be included into a GNN A GNN Layer
layer for better performance v

Linear

v

BatchNorm

v

Transformation ~ Dropout

v

Activation

You can ¥

Attention

explore diverse GNN designs or try ¥

out your own ideas in GraphGym Aggrefation

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 33

https://github.com/snap-stanford/GraphGym

Stacking Layers of a GNN

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

Stacking GNN Layers

How to connect GNN layers into a GNN?
* Stack layers sequentially
‘/“ * Ways of adding skip connections

— oo

. GNN Layer 1

TARGET NODE

INPUT GRAPH

! o

connectlwty ‘ i ... :

GNN Layer 2 S | »

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 35

https://arxiv.org/pdf/2011.08843.pdf

Stacking GNN Layers

How to construct a Graph Neural Network?
The standard way: Stack GNN layers sequentially

Input: Initial raw node feature

Output: Node embeddings after L GNN layers

'

GNN Layer

Lo

GNN Layer

[

GNN Layer

v

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 36

The Over-smoothing Problem

GNN suffers from the over-smoothing problem
The over-smoothing problem: all the node
embeddings converge to the same value

This is bad because we want to use node

embeddings to differentiate nodes
Why does the over-smoothing problem
happen?

Z
Z
O

(C
(T

O
O
D
LL

ive

Recept

the set of nodes that determine

the embedding of a node of interest

In a K-layer GNN, each node has a receptive field of

K-hop neighborhood

| .
o)
[P
2
]
= O
S
g0
= >
B ©
1
ool
Q
o
| .
o)
[P
=2
]
= O
| .
0
= >
e
1
¥~
Q
o
| .
o)
[P
o 2
o 2
- O
| .
g o
.uw
WI_
C1
Q
o

O Node of interest
@ Receptive field
O Other nodes

O Node of interest

o @ Receptive field

O Node of interest
o @ Receptive field

O Other nodes

38

Jiaxuan You, Introduction to Graph Neural Networks

8/24/21

Z
Z
O

(C
(T

O
O
D
LL

ive

Recept

ield overlap for two nodes

ive f

Recept

ickly grows when we

the number of hops (num of GNN layers)

The shared neighbors qu

INCrease

O Nodes of interest
@ Shared neighbors
O Other nodes

3-hop neighbor overlap
Almost all the nodes!

O Nodes of interest
@ Shared neighbors
O Other nodes

2-hop neighbor overlap

About 20 nodes

O Nodes of interest
@ Shared neighbors
O Other nodes

1-hop neighbor overlap

Only 1 node

39

Jiaxuan You, Introduction to Graph Neural Networks

8/24/21

Receptive Field & Over-smoothing

8/24/21

We knew the embedding of a node is determined
by its
If two nodes have highly-overlapped receptive fields, then
their embeddings are highly similar
= nodes will have highly-
overlapped receptive fields > node embeddings
will be highly similar = suffer from the over-
smoothing problem
how do we overcome over-smoothing problem?

Jiaxuan You, Introduction to Graph Neural Networks 40

Design GNN Layer Connectivity

What do we learn from the over-smoothing problem?
Lesson 1: Be cautious when adding GNN layers

Unlike neural networks in other domains (CNN for image
classification), adding more GNN layers do not always help

Step 1: Analyze the necessary receptive field to solve your
problem. E.g., by computing the diameter of the graph

Step 2: Set number of GNN layers L to be a bit more than the
receptive field we like. Do not set L to be unnecessarily
large!

Question: How to enhance the expressive power of a
GNN, if the number of GNN layers is small?

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 41

Expressive Power for Shallow GNNs

How to make a shallow GNN more expressive?
Solution 1: Increase the expressive power within
each GNN layer

In our previous examples, each transformation or
aggregation function only include one linear layer

We can make aggregation / transformation become a
deep neural network!

If needed, each boxcould __— (2) Aggregation
include a 3-layer MLP —_—

) om ¢® (1) Transformation
O P

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 42

Expressive Power for Shallow GNNs

How to make a shallow GNN more expressive?
Solution 2: Add layers that do not pass messages

A GNN does not necessarily only contain GNN layers

E.g., we can add MLP layers (applied to each node) before and after
GNN layers, as pre-process layers and post-process layers

R— +
i | MLP Layer Pre- |
\’ process |
MLP Layer layers
_____________ I
GNN Layer
v
GNN Layer
v
GNN Layer
_________ Ny
MLP Layer Post-
\’ process |
MLP Layer layers
S — P

Pre-processing layers: Important when
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when
reasoning / transformation over node
embeddings are needed

E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 43

He et al. , CVPR 2015

Design GNN Layer Connectivity

What if my problem still requires many GNN layers?
Lesson 2: Add skip connections in GNNs

Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

i, S | Duplicate

e

process

layers branches

GNN Layer .

5 5 weight layer
GNN Layer SKIp_ 'F(X) A 4 relu
; i connection : .

: : ; weight layer
. | GNN Layer |: :

MLP Layer Post-

W sum two
process E

layers | branches

""""""""""""""""""""""""""""" Jiaxuan You, Introduction to Graph Neural Networks 44

Idea of skip connections:
Before adding shortcuts:
X F(x)
identity ~ After adding shortcuts:
F(x) + x

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

ldea of Skip Connections

Why do skip connections work?
Intuition: Skip connections create a mixture of models
N skip connections = 2V possible paths
Each path could have up to N modules

We automatically get a mixture All the possible paths:
of shallow GNNs and deep GNNs =~ 2*2%2=2°=8

Path 2: skip this module

Building block

Skip
connection

TR

Residual
module

Path 1: include this module —
(a) Conventional 3-block residual network (b) Unraveled view of (a)

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 45

https://arxiv.org/abs/1605.06431

Example: GCN with Skip Connections

A standard GCN layer

1 h(l 1)
h = o (Zuemv) W o)

This is our F(x)

A GCN layer with skip connection

h(l 1)

[
h) =g (ZuEN(v)w()

F(x) +

IN(v)|

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks

Y

weight layer

F(x) e

lu

X

weight layer

identity

MLP Layer

Pre-

2

process

MLP Layer

layers

Skip

MLP Layer

Post-

¥

process

MLP Layer

layers

e e I

46

Xu et al. , ICML 2018

Other Options of Skip Connections

Input: h{”
v
Other options: Directly GNN Layer
skip to the last layer Sl
The final layer directly GNIN Layer
aggregates from the all the by
node embeddings in the G':j e
previous layers o E

Layer aggregation
Concat/Pooling/LSTM

Output: hl(,f tnal)

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 47

https://arxiv.org/abs/1806.03536

Graph Manipulation in GNNs

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

General GNN Framework

Idea: Raw input graph # computational graph
| * Graph feature augmentation
‘/“' * Graph structure manipulation

|

TARGET NODE

INPUT GRAPH

% ua o8

ﬁ. ' .b

00®
(4) Graph manipulation

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 49

https://arxiv.org/pdf/2011.08843.pdf

Why Manipulate Graphs

Our assumption so far has been
Raw input graph = computational graph
Reasons for breaking this assumption
Feature level:
The input graph lacks features = feature augmentation

Structure level:

The graph is too sparse = inefficient message passing
The graph is too dense =2 message passing is too costly

The graph is too large = cannot fit the computational
graph into a GPU

It’s just unlikely that the input graph happens to be
the optimal computation graph for embeddings

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 50

Graph Manipulation Approaches

8/24/21

Graph Feature manipulation

The input graph lacks features = feature
augmentation

Graph Structure manipulation
The graph is too sparse = Add virtual nodes / edges

The graph is too dense = Sample neighbors when
doing message passing

The graph is too large = Sample subgraphs to
compute embeddings

Will cover later in lecture: Scaling up GNNs

Jiaxuan You, Introduction to Graph Neural Networks 51

Feature Augmentation on Graphs

Why do we need feature augmentation?
(1) Input graph does not have node features

This is common when we only have the adj. matrix
Standard approaches:
a) Assign constant values to nodes

INPUT GRAPH

8/24/21 Jiaxuan You, Intro duction to Grap h Neura | Networ ks

Feature Augmentation on Graphs

Why do we need feature augmentation?
(1) Input graph does not have node features

This is common when we only have the adj. matrix
Standard approaches:
b) Assign unique IDs to nodes

These IDs are converted into one-hot vectors

? One-hot vector for node with ID=5
14 3 ID=5
|
. / 6 [0,0,0,0,1,0]

5 Y
INPUT GRAPH Total number of IDs =6

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 53

Feature Augmentation on Graphs

Feature augmentation: constant vs. one-hot

Constant node feature

PPPPPPPPPP

One-hot node feature

2
1 3
4/ 6
5
INPUT GRA

Expressive power

Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature

High. O(|V|) dimensional feature,
cannot apply to large graphs

Use cases

Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

8/24/21

Jiaxuan You, Introduction to Graph Neural Networks

54

Feature Augmentation on Graphs

(2) Certain features can help GNN learning
Other commonly used augmented features:

Node degree
PageRank
Clustering coefficient

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks

Add Virtual Nodes [Edges

Common approach: Connect 2-hop neighbors via
virtual edges

Intuition: Instead of using adj. matrix A for GNN

computation, use
Authors Papers

Use cases: Bipartite graphs

Author-to-papers (they authored)

2-hop virtual edges make an author-author
collaboration graph

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 56

Add Virtual Nodes [Edges

The virtual node will connect to all the

nodes in the graph The virtual g
node Py ¢/

Suppose in a sparse graph, two nodes have
shortest path distance of 10

After adding the virtual node, all the nodes
will have a distance of 2
Node A —Virtual node — Node B /

Benefits: Greatly improves message
passing in sparse graphs

INPUT GRAPH

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 57

Hamilton et al. , NeurlIPS 2017

Node Neighborhood Sampling

All the nodes are used for message passing

T NODE ® i CE— <

.
0"
l ""‘
A
‘o‘
A »"
* o
V' A ‘
o
A <« D TELTRRTTTETEERITY vv
.0
.,

INPUT GRAPH R\

(Randomly) sample a node’s
neighborhood for message passing

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 58

https://arxiv.org/pdf/1706.02216.pdf

Neighborhood Sampling Example

For example, we can randomly choose 2
neighbors to pass messages

Only nodes B and D will pass message to A

___________ A
-
TARGET NODE ‘ R SRECTE .
A .
N
-) <«
w.
INPUT GRAPH -

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks

Neighborhood Sampling Example

Next time when we compute the embeddings,
we can sample different neighbors

Only nodes C and D will pass message to A

TARGET NODE

l e
@ B < R .4—.}:_’::
INPUT GRAPH e

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 60

Ying et al. , KDD 2018

Neighborhood Sampling Example

In expectation, we can get embeddings similar
to the case where all the neighbors are used

Benefits: greatly reduce computational cost
And in practice it works great!

‘‘‘‘‘‘‘‘‘ A
ARGET NODE ® A‘:‘ﬁf ____________________ <
. @ @)
A ""’
S A ®.9 R
A <« ¢ ‘ 4‘.1
2‘ e
oy
INPUTGRAPH . T ey A

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 61

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA

Summary of the Talk

Recap: A general perspective for GNNs
GNN Layer:

Transformation + Aggregation

Classic GNN layers: GCN, GraphSAGE, GAT
Layer connectivity:

Deciding number of layers

Skip connections
Graph Manipulation:

Feature augmentation
Structure manipulation

Resources: PyTorch Geometric + GraphGym

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 62

GraphGym: Code Platform for GNN Design

Highly modularized pipeline for GNN
research:

Intra-layer Design: 4 dims Inter-layer Design: 4 dims
Data loading, splitting | v
GNN implementation
: GNN Layer
Tasks: node/edge/graph P — .
Eva I u at i oNn: accura Cy, RO C A U C’ N Learning Configuration: 4 dims Iayers

i | MLP Layer Pre-

Batch size Post-
Learnjng rate pg)ceerzs
GNN layers Trainng epochs LwPlaer | e |
Prediction head for laver dict = {
. inear': Linear,
different tasks :gég;oncEP'GCNConv .
*sageconv' - SAGEConv, Layer connectivity

head_dict = { 'gatconv': GATConv,

'node': GNNNodeHead,
'edge': GNNEdgeHead,

'splineconv': SplineConv,
'ginconv': GINConv,
'generalconv': GeneralConv,

stage_dict - {
'stack': GNNStackStage,

'link_pred': GNNEdgeHead,

'graph': GNNGraphHead 'skipsum': GNNSkipStage,

'skipconcat': GNNSkipStage,

'generaledgeconv': GeneralE
'generalsampleedgeconv': Ge

by

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks

GraphGym: Reproducible experiment
Mmanagement

results

PyG
Cora
node

classification

True
0.8, 0.2

position

cross_entropy
dot
add

1
2

256
generalconv
stack

True

prelu
0.0
add
False

8/24/21

—

xxxxxx

—_—

Dataset

Training

Model

Optimizer

simple as

* One experiment: fully described
by a configuration file

* Running an experiment is as

main.py ——cfg design_v2.yaml ——repeat 3

Jiaxuan You, Introduction to Graph Neural Networks

64

GraphGym: Scalable experiment
Mmanagement

A Grid of experimental settings

dataset: TU, task: graph

dataset.format format ['PyG'] - .

e T T T T A b Ty U (TR - R T B —— Run different datasets
dataset.task task ['graph‘] -

dataset.transductive trans [False]

dataset.augment_feature feature [[]]

dataset.augment_label label ['']

gnn.layers_pre_mp 1_pre [1,2] :

gnn. layers_mp 1_mp [2,4,6,8] : .

gnn. layers_post_mp 1 post [2,3] — Run different models
gnn.stage_type stage ['skipsum', 'skipconcat'] :

gnn.agg agg ['add', 'mean', 'max'] :

Launching thousands of GNNs in parallel

configs_gen.py ——config design_v2ogb.yaml --grid round2ogb.txt ——out_dir configs

run_batch.sh configs/design_v2ogb_grid_round2ogb 3 8 1

Repeat each experiment Run 8 experiments
for 3 random seeds concurently

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 65

GraphGym: Scalable experiment

management

Automatically generate experiment reports and figures

|_pre I_mp |_post stage agg epoch loss loss_std params time_iter time_iter_st accuracy accuracy_std
1 2 2 skipconcat add 399 0.5678 0.0248 217256 0.1098 0.0075 0.886 0.0017
1 2 2 skipconcat max 399 0.3754 0.0236 217256 0.0896 0.0026 0.9164 0.0017
1 2 2 skipconcat mean 399 0.4885 0.0122 217256 0.0859 0.0046 0.9083 0.0011
1 2 2 skipsum add 399 0.5624 0.022 295119 0.1121 0.0155 0.8853 0.0039
1 2 2 skipsum max 399 0.3966 0.0054 295119 0.1049 0.003 0.9151 0.0025
1 2 2 skipsum mean 399 0.4701 0.0118 295119 0.1027 0.0038 0.909 0.0028
| 1.| 2 3 skipconcat add 399 0.5944 0 0231 199611 0.1138 0 0376 0.8844 0 0082
2 2 9 2 2

0]
g 2 |
g |
22 | l |
c >
=< | |
% 1- 1'—*—|—v— 1- 1- T T 1 14
I False True 0.0 0.3 0.6 prelu relu swish max mean sum skipcat skipsum _stack
- 21 34 3 34 4 34
S o
oy 3
32 24 2 2 2
Q = 2
< .2
04l 118 14 ! 1 . 1 14
False :I'rug 0.0 0.3 0.6 prelu relu swish max mean ~ sum skipcat skipsum stack
Batch Normalization Dropout Activation Aggregation Message passmg layer Layer connectivity
2 2 2 2 2 2

Average

D
C
C
g 1 2 1- 1 1- >
4 1 2 3 1 2 3 16 32 64 0.001 _ 0.01 0.1 adam 100 200 400
-, = 3 39 39 34 21 34
e}
85
3 k i] i] k i))
Q =
< .2
04l : ; 1 : ! 1 ; ; 1 1 14
1 2 3 1 2 3 16 32 64 0.001 0.01 0.1 adam 100 200 400
Pre-process layers Post-process layers Batch size Learning rate Opt|m|zer Training epochs

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks

Stanford Graph Learning Workshop

Stanford .
ENGINEERING ‘ Stanford Computer Forum Stanford ‘ Data Science

https://snhap.stanford.edu/graphlearning-workshop/

Sept 16, 8am-5pm Pacific Time
Speakers: leaders from academia + industry
Will be live-streamed, free registration!

New graph learning platform: Kumo

Pytorch Geometric + GraphGym + more!

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 67

https://snap.stanford.edu/graphlearning-workshop/

