
JiaxuanYou, Stanford University

Adapted from Stanford CS 224W & CS 246

Jiaxuan You, Introduction to Graph Neural Networks 2

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

8/24/21

https://arxiv.org/abs/1503.00759
https://en.wikipedia.org/wiki/Triangle_mesh
https://www.researchgate.net/figure/Static-call-graph-for-Figure-1-Callsites-are-labeled-with-their-line-number-in-the-code_fig1_220751974
https://www.mdpi.com/2078-2489/1/2/60/htm
http://math.hws.edu/graphicsbook/c2/s4.html
https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html

Jiaxuan You, Introduction to Graph Neural Networks 3

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

Main question:

How do we perform ML over graphs?

8/24/21

https://arxiv.org/abs/1503.00759
https://en.wikipedia.org/wiki/Triangle_mesh
https://www.researchgate.net/figure/Static-call-graph-for-Figure-1-Callsites-are-labeled-with-their-line-number-in-the-code_fig1_220751974
https://www.mdpi.com/2078-2489/1/2/60/htm
http://math.hws.edu/graphicsbook/c2/s4.html
https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html

Networks are complex.
¡ Arbitrary size and complex topological

structure (i.e., no spatial locality like grids)

Jiaxuan You, Introduction to Graph Neural Networks 4

vs.

Networks Images

Text

8/24/21

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 5

Node-level
prediction
“What is the area
of this research
paper?”

Edge-level
prediction
“Is this transaction
fraudulent?”

Graph-level
prediction
“Is this molecular
graph toxic?”

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 6

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Prediction head
(Node/edge/graph)

Predictions
(Node/edge/graph)

Label

Graph
Neural
Network

Node
embeddings

Input
Graph

Loss

Forward

Backward

https://arxiv.org/pdf/2011.08843.pdf

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 7

¡ Intuition: Map nodes to 𝑑-dimensional embeddings
such that similar nodes in the graph are embedded
close together

¡ How to learn the encoder function 𝑬𝑵𝑪(⋅)?

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 8

…

Output: Node embeddings

Idea: Node’s neighborhood defines a
computation graph

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 9

Determine node
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the
graph to compute node features

¡ Intuition: Nodes aggregate information from
their neighbors using neural networks

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 10

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks

¡ Intuition: Network neighborhood defines a
computation graph

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 11

Every node defines a computation
graph based on its neighborhood!

JiaxuanYou, Stanford University

Adapted from Stanford CS 224W & CS 246

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 13

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

https://arxiv.org/pdf/2011.08843.pdf

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 14

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

GNN Layer 1

GNN Layer 2

(3) Layer
connectivity

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Connect GNN layers into a GNN
• Stack layers sequentially
• Ways of adding skip connections

https://arxiv.org/pdf/2011.08843.pdf

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 15

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure augmentation

https://arxiv.org/pdf/2011.08843.pdf

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 16

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

How do we train a GNN
• Supervised/Unsupervised

objectives
• Node/Edge/Graph level

objectives

https://arxiv.org/pdf/2011.08843.pdf

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 17

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

JiaxuanYou, Stanford University

Adapted from Stanford CS 224W & CS 246

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 19

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

¡ Idea of a GNN Layer:
§ Compress a set of vectors into a single vector
§ Two step process:

§ (1) Message
§ (2) Aggregation

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 20

Input node embedding 𝐡!
"#$, 𝐡%∈'(!)

"#$

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡!
"

(2) Aggregation

(1) Message

Node 𝒗

¡ (1) Message computation
§ Message function:

§ Intuition: Each node will create a message, which will be
sent to other nodes later

§ Example: A Linear layer 𝐦#
(%) = 𝐖 % 𝐡#

%'(

§ Multiply node features with weight matrix 𝐖 !

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 21

(2) Aggregation

(1) Message

Node 𝒗

𝐦"
($) = MSG $ 𝐡"

$&'

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ (2) Aggregation
§ Intuition: Each node will aggregate the messages from

node 𝑣’s neighbors

§ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

§𝐡)
% = Sum({𝐦#

% , 𝑢 ∈ 𝑁(𝑣)})

𝐡!
(#) = AGG # 𝐦"

$, 𝑢 ∈ 𝑁 𝑣

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 22

(2) Aggregation

(1) Message

Node 𝒗

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

𝐡)
% = CONCAT AGG 𝐦#

% , 𝑢 ∈ 𝑁 𝑣 ,𝐦)
%

¡ Issue: Information from node 𝑣 itself could get lost
§ Computation of 𝐡)

(%) does not directly depend on 𝐡)
(%'()

¡ Solution: Include 𝐡(
($&') when computing 𝐡(

($)

§ (1) Message: compute message from node 𝒗 itself
§ Usually, a different message computation will be performed

§ (2) Aggregation: After aggregating from neighbors, we can
aggregate the message from node 𝒗 itself
§ Via concatenation or summation

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 23

𝐦"
(!) = 𝐁 ! 𝐡"

!%&𝐦'
(!) = 𝐖 ! 𝐡'

!%&

First aggregate from neighbors

Then aggregate from node itself

(2) Aggregation

(1) Message

¡ Putting things together:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors

§ Nonlinearity (activation): Adds expressiveness
§ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …
§ Can be added to message or aggregation

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 24

𝐦"
($) = MSG $ 𝐡"

$&' , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡!
(#) = AGG # 𝐦%

, 𝑢 ∈ 𝑁 𝑣 ,𝐦!
#

¡ (1) Graph Convolutional Networks (GCN)

¡ How to write this as Message + Aggregation?

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 25

𝐡)
(%) = 𝜎 𝐖 % G

#∈+)

𝐡#
%'(

𝑁 𝑣

𝐡)
(%) = 𝜎 G

#∈+)

𝐖 % 𝐡#
%'(

𝑁 𝑣

Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

https://arxiv.org/pdf/1609.02907.pdf

¡ (1) Graph Convolutional Networks (GCN)

¡ Message:

§ Each Neighbor: 𝐦#
(%) = (

+)
𝐖 % 𝐡#

%'(

¡ Aggregation:
§ Sum over messages from neighbors, then apply activation

§ 𝐡)
% = 𝜎 Sum 𝐦#

% , 𝑢 ∈ 𝑁 𝑣

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 26

Normalized by node degree
(In the GCN paper they use a slightly
different normalization)

𝐡)
(%) = 𝜎 G

#∈+)

𝐖 % 𝐡#
%'(

𝑁 𝑣
(2) Aggregation

(1) Message

¡ In practice, these classic GNN
layers are a great starting point
§ We can often get better

performance by considering a
general GNN layer design

§ Concretely, we can include
modern deep learning modules
that proved to be useful in many
domains

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 27

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf

¡ Many modern deep learning modules can be
incorporated into a GNN layer
§ Batch Normalization:

§ Stabilize neural network training

§ Dropout:
§ Prevent overfitting

§ Attention/Gating:
§ Control the importance of a message

§ More:
§ Any other useful deep learning modules

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 28

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf

¡ Goal: Stabilize neural networks training
¡ Idea: Given a batch of inputs (node embeddings)

§ Re-center the node embeddings into zero mean
§ Re-scale the variance into unit variance

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 29

𝛍* =
1
𝑁0

+,$

'

𝐗+,*Input: 𝐗 ∈ ℝ+×3
𝑁 node embeddings

Trainable Parameters:
𝛄, 𝛃 ∈ ℝ3

Output: 𝐘 ∈ ℝ+×3
Normalized node embeddings

𝛔*. =
1
𝑁0

+,$

'

𝐗+,* − 𝛍*
.

6𝐗+,* =
𝐗+,* − 𝛍*

𝛔*. + 𝜖

𝐘+,* = 𝛄*6𝐗+,* + 𝛃*

Step 1:
Compute the
mean and variance
over 𝑵 embeddings

Step 2:
Normalize the feature
using computed mean
and variance

S. Loffe, C.Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf

¡ Goal: Regularize a neural net to prevent overfitting.
¡ Idea:

§ During training: with some probability 𝑝, randomly set
neurons to zero (turn off)

§ During testing: Use all the neurons for computation

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 30

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Removed neurons

Dropout

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_campaign=buffer&utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com

¡ In GNN, Dropout is applied to the
linear layer in the message function
§ A simple message function with linear

layer: 𝐦"
($) = 𝐖 $ 𝐡"

$&'

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 31

Dropout
𝐡#
%'(𝐦#

(%)

𝐖 %

Visualization of a linear layer

(2) Aggregation

(1) Message

Apply activation to 𝒊-th dimension of
embedding 𝐱
¡ Rectified linear unit (ReLU)

ReLU 𝐱< = max(𝐱<, 0)
§ Most commonly used

¡ Sigmoid

𝜎 𝐱< =
1

1 + 𝑒'𝐱!
§ Used only when you want to restrict the

range of your embeddings
¡ Parametric ReLU
PReLU 𝐱< = max 𝐱<, 0 + 𝑎<min(𝐱<, 0)

𝑎< is a trainable parameter
§ Empirically performs better than ReLU

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 32

𝑥

𝑦

0
𝑥

𝑦

0

1

𝑥

𝑦

0
𝑦 = 𝑎𝑥

𝑦 = 𝑥

𝑦 = 𝑥

𝑦 =
1

1 + 𝑒!"

¡ Summary: Modern deep learning
modules can be included into a GNN
layer for better performance

¡ Designing novel GNN layers is still
an active research frontier!

¡ Suggested resources: You can
explore diverse GNN designs or try
out your own ideas in GraphGym

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 33

A GNN Layer

https://github.com/snap-stanford/GraphGym

JiaxuanYou, Stanford University

Adapted from Stanford CS 224W & CS 246

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 35

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

GNN Layer 1

GNN Layer 2

(3) Layer
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

¡ How to construct a Graph Neural Network?
§ The standard way: Stack GNN layers sequentially
§ Input: Initial raw node feature 𝐱(
§ Output: Node embeddings 𝐡(

(/) after 𝐿 GNN layers

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 36

𝐡"
(() = 𝐱"

𝐡"
(&)

𝐡"
())

𝐡"
(*)

¡ The Issue of stacking many GNN layers
§ GNN suffers from the over-smoothing problem

¡ The over-smoothing problem: all the node
embeddings converge to the same value
§ This is bad because we want to use node

embeddings to differentiate nodes
¡ Why does the over-smoothing problem

happen?

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 37

¡ Receptive field: the set of nodes that determine
the embedding of a node of interest
§ In a 𝑲-layer GNN, each node has a receptive field of
𝑲-hop neighborhood

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 38

Receptive field for
1-layer GNN

Receptive field for
2-layer GNN

Receptive field for
3-layer GNN

¡ Receptive field overlap for two nodes
§ The shared neighbors quickly grows when we

increase the number of hops (num of GNN layers)

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 39

1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!

¡ We can explain over-smoothing via the notion
of receptive field
§ We knew the embedding of a node is determined

by its receptive field
§ If two nodes have highly-overlapped receptive fields, then

their embeddings are highly similar

§ Stack many GNN layers à nodes will have highly-
overlapped receptive fields à node embeddings
will be highly similar à suffer from the over-
smoothing problem

¡ Next: how do we overcome over-smoothing problem?

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 40

¡ What do we learn from the over-smoothing problem?
¡ Lesson 1: Be cautious when adding GNN layers

§ Unlike neural networks in other domains (CNN for image
classification), adding more GNN layers do not always help

§ Step 1: Analyze the necessary receptive field to solve your
problem. E.g., by computing the diameter of the graph

§ Step 2: Set number of GNN layers 𝐿 to be a bit more than the
receptive field we like. Do not set 𝑳 to be unnecessarily
large!

¡ Question: How to enhance the expressive power of a
GNN, if the number of GNN layers is small?

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 41

¡ How to make a shallow GNN more expressive?
¡ Solution 1: Increase the expressive power within

each GNN layer
§ In our previous examples, each transformation or

aggregation function only include one linear layer
§ We can make aggregation / transformation become a

deep neural network!

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 42

(2) Aggregation

(1) Transformation

If needed, each box could
include a 3-layer MLP

¡ How to make a shallow GNN more expressive?
¡ Solution 2: Add layers that do not pass messages

§ A GNN does not necessarily only contain GNN layers
§ E.g., we can add MLP layers (applied to each node) before and after

GNN layers, as pre-process layers and post-process layers

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 43

Pre-processing layers: Important when
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when
reasoning / transformation over node
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

¡ What if my problem still requires many GNN layers?
¡ Lesson 2: Add skip connections in GNNs

§ Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

§ Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 44

Idea of skip connections:
Before adding shortcuts:

𝑭 𝐱
After adding shortcuts:

𝑭 𝐱 + 𝐱

Duplicate
into two
branches

Sum two
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

¡ Why do skip connections work?
§ Intuition: Skip connections create a mixture of models
§ 𝑁 skip connections à 2+ possible paths
§ Each path could have up to 𝑁 modules

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 45

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 2/ = 8

§ We automatically get a mixture
of shallow GNNs and deep GNNs

https://arxiv.org/abs/1605.06431

¡ A standard GCN layer

¡ 𝐡)
(%) = 𝜎 ∑#∈+) 𝐖 % 𝐡*

+,-

+)

¡ A GCN layer with skip connection

¡ 𝐡)
(%) = 𝜎 ∑#∈+) 𝐖 % 𝐡*

+,-

+)
+ 𝐡)

(%'()

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 46

This is our 𝑭 𝐱

𝑭(𝐱) + 𝐱

¡ Other options: Directly
skip to the last layer
§ The final layer directly

aggregates from the all the
node embeddings in the
previous layers

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 47

Xu et al. Representation learning on graphs with jumping knowledge networks, ICML 2018

𝐡!
(#)

𝐡!
(%)

𝐡!
(&)

Input: 𝐡!
(')

Output: 𝐡!
(()*+,)

https://arxiv.org/abs/1806.03536

JiaxuanYou, Stanford University

Adapted from Stanford CS 224W & CS 246

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 49

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(4) Graph manipulation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation

https://arxiv.org/pdf/2011.08843.pdf

Our assumption so far has been
¡ Raw input graph = computational graph
Reasons for breaking this assumption
§ Feature level:

§ The input graph lacks features à feature augmentation
§ Structure level:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational

graph into a GPU
§ It’s just unlikely that the input graph happens to be

the optimal computation graph for embeddings
8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 50

¡ Graph Feature manipulation
§ The input graph lacks features à feature

augmentation
¡ Graph Structure manipulation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when

doing message passing
§ The graph is too large à Sample subgraphs to

compute embeddings
§ Will cover later in lecture: Scaling up GNNs

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 51

Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ a) Assign constant values to nodes

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 52

1

1

1

1

1

1

Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ b) Assign unique IDs to nodes
§ These IDs are converted into one-hot vectors

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 53

1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5
One-hot vector for node with ID=5

¡ Feature augmentation: constant vs. one-hot

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 54

Constant node feature One-hot node feature

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature High. 𝑂 𝑉 dimensional feature,
cannot apply to large graphs

Use cases Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1

Why do we need feature augmentation?
¡ (2) Certain features can help GNN learning
¡ Other commonly used augmented features:
§ Node degree
§ PageRank
§ Clustering coefficient
§ …

¡ Any useful graph statistics can be used!

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 55

¡ Motivation: Augment sparse graphs
¡ (1) Add virtual edges
§ Common approach: Connect 2-hop neighbors via

virtual edges
§ Intuition: Instead of using adj. matrix 𝐴 for GNN

computation, use 𝐴 + 𝐴3

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 56

A

B

C

D

E

Authors Papers

§ Use cases: Bipartite graphs
§ Author-to-papers (they authored)
§ 2-hop virtual edges make an author-author

collaboration graph

¡ Motivation: Augment sparse graphs
¡ (2) Add virtual nodes
§ The virtual node will connect to all the

nodes in the graph
§ Suppose in a sparse graph, two nodes have

shortest path distance of 10
§ After adding the virtual node, all the nodes

will have a distance of 2
§ Node A – Virtual node – Node B

§ Benefits: Greatly improves message
passing in sparse graphs

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 57

The virtual
node

¡ Previously:
§ All the nodes are used for message passing

¡ New idea: (Randomly) sample a node’s
neighborhood for message passing

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 58

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

¡ For example, we can randomly choose 2
neighbors to pass messages
§ Only nodes 𝐵 and 𝐷 will pass message to 𝐴

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 59

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ Next time when we compute the embeddings,
we can sample different neighbors
§ Only nodes 𝐶 and 𝐷 will pass message to 𝐴

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 60

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ In expectation, we can get embeddings similar
to the case where all the neighbors are used
§ Benefits: greatly reduce computational cost
§ And in practice it works great!

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 61

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA

¡ Recap: A general perspective for GNNs
§ GNN Layer:

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity:
§ Deciding number of layers
§ Skip connections

§ Graph Manipulation:
§ Feature augmentation
§ Structure manipulation

¡ Resources: PyTorch Geometric + GraphGym
8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 62

¡ Highly modularized pipeline for GNN
research:
§ Data loading, splitting
§ GNN implementation
§ Tasks: node/edge/graph
§ Evaluation: accuracy, ROC AUC, …
§ …

63

Prediction head for
different tasks

GNN layers

Layer connectivity

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks

64

• One experiment: fully described
by a configuration file

• Running an experiment is as
simple as

Dataset

Training

Model

Optimizer

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks

¡ A Grid of experimental settings

¡ Launching thousands of GNNs in parallel

65

Run different datasets

Run different models

Repeat each experiment
for 3 random seeds

Run 8 experiments
concurently

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks

¡ Automatically generate experiment reports and figures

668/24/21 Jiaxuan You, Introduction to Graph Neural Networks

¡ https://snap.stanford.edu/graphlearning-workshop/
§ Sept 16, 8am-5pm Pacific Time
§ Speakers: leaders from academia + industry
§ Will be live-streamed, free registration!

¡ New graph learning platform: Kumo
§ Pytorch Geometric + GraphGym + more!

8/24/21 Jiaxuan You, Introduction to Graph Neural Networks 67

https://snap.stanford.edu/graphlearning-workshop/

