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Abstract

Agricultural monitoring, especially in developing countries,
can help prevent famine and support humanitarian efforts.
A central challenge is yield estimation, i.e., predicting crop
yields before harvest.
We introduce a scalable, accurate, and inexpensive method
to predict crop yields using publicly available remote sens-
ing data. Our approach improves existing techniques in three
ways. First, we forego hand-crafted features traditionally
used in the remote sensing community and propose an ap-
proach based on modern representation learning ideas. We
also introduce a novel dimensionality reduction technique
that allows us to train a Convolutional Neural Network or
Long-short Term Memory network and automatically learn
useful features even when labeled training data are scarce.
Finally, we incorporate a Gaussian Process component to
explicitly model the spatio-temporal structure of the data
and further improve accuracy. We evaluate our approach on
county-level soybean yield prediction in the U.S. and show
that it outperforms competing techniques.

Introduction
It is estimated that 795 million people still live without an
adequate food supply (FAO 2015), and that by 2050 there
will be two billion more people to feed (Dodds and Bartram
2016). Ending hunger and improving food security are pri-
mary goals in the 2030 Agenda for Sustainable Development
of the United Nations (United Nations 2015).

A central challenge of addressing food security issues is
yield estimation, namely being able to accurately predict
crop yields well before harvest. Agricultural monitoring,
especially in developing countries, can improve food pro-
duction and support humanitarian efforts in light of climate
change and droughts (Dodds and Bartram 2016).

Existing approaches rely on survey data and other vari-
ables related to crop growth (such as weather and soil prop-
erties) to model crop yield. These approaches are very suc-
cessful in the United States, where data are plentiful and of
relatively high quality. Comprehensive surveys of weather
parameters such as the Daymet (Thornton et al. 2014) and
land cover types such as the Cropland Data Layer (Boryan et
al. 2011) are publicly available and greatly facilitate the crop
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yield prediction task. However, information about weather,
soil properties, and precise land cover data are typically not
available in developing countries, where reliable yield pre-
dictions are most needed.

Remote sensing data, on the other hand, are globally avail-
able and relatively inexpensive. It is frequently used in com-
putational sustainability applications, such as species distri-
bution modeling (Fink, Damoulas, and Dave 2013), poverty
mapping (Xie et al. 2016; Jean et al. 2016; Ermon et al.
2015), climate modeling (Ristovski et al. 2013), and natural
disaster prevention (Boulton, Shotton, and Williams 2016).
Multi-spectral satellite images, which include information in
addition to the visible wavelengths (RGB), have fairly high
spatial and temporal resolution, and contain a wealth of in-
formation on vegetation growth and thus on agricultural out-
comes. However, useful features are hard to extract since the
data are high-dimensional and unstructured.

In this paper, we propose an approach based on mod-
ern representation learning ideas, which have recently led
to massive improvements in a range of computer vision
tasks (Krizhevsky, Sutskever, and Hinton 2012; Karpathy et
al. 2014). We overcome the scarcity of training data by em-
ploying a new dimensionality reduction technique. Specifi-
cally, we treat raw images as histograms of pixel counts, and
use a mean-field approximation to achieve tractability. Deep
learning architectures, including CNNs and LSTMs, are then
trained on these histograms to predict crop yields. While this
approach performs well, it does not explicitly account for
spatio-temporal dependencies between data points, e.g., due
to common soil properties. We overcome this limitation by
incorporating a Gaussian Process layer on top of our neural
network models. We evaluate our approach on the task of
predicting county-level soybean yield in the United States.
Experimental results show that our model outperforms tra-
ditional remote-sensing based methods by 30% in terms of
Root Mean Squared Error (RMSE), and USDA national-
level estimates by 15% in terms of Mean Absolute Percent-
age Error (MAPE).

Related Work
Remote sensing data have been widely used for predict-
ing crop yields in the remote sensing community (Bolton
and Friedl 2013; Johnson 2014). However, all existing ap-
proaches we are aware of rely on hand-crafted features,



which are believed to compactly summarize most of the in-
formation related to vegetation growth contained in the raw
(multi-spectral) images. Some widely used features include
Normalized Difference Vegetation Index (NDVI) (Quarmby
et al. 1993; Johnson 2014), two-band Enhanced Vegetation
Index (EVI2) (Bolton and Friedl 2013), and Normalized Dif-
ference Water Index (NDWI) (Satir and Berberoglu 2016).
While significant effort has been devoted to feature engi-
neering, existing features are fairly crude indexes that de-
pend on a small number (usually two) of the available bands.
Inspired by recent successes in computer vision and speech
recognition and in contrast to existing approaches, we pro-
pose the use of modern representation learning ideas from
AI to automatically discover relevant features from the raw
data. Our experimental results suggest that our learned fea-
tures are much more effective, and that bands that are typi-
cally ignored could play an important role.

Second, high-order moments of the features are rarely ex-
plored in existing approaches. In most settings, ground truth
average yield data are provided over a region as the regres-
sion output, while features are given as input for all the lo-
cations within that region. Most approaches either calculate
the mean (first moment) of the features over the region of in-
terest (Johnson 2014) or do sampling (Kuwata and Shibasaki
2015). In contrast, our model works directly with the entire
pixel distribution over a region. Using a mean-field assump-
tion to achieve tractability, we are able to learn features from
the transformed normalized histograms.

Third, most previous studies assume that crop yields are
mutually independent and identically distributed over space
and time. Therefore, crop yields are predicted with a regres-
sion model separately for each location (Bolton and Friedl
2013; Johnson 2014). However, spatial and temporal corre-
lations that are not explained by the available covariates are
likely to be presented (e.g., due to soil properties). Thus, we
propose the use of a Gaussian Process (GP) layer on top of
our neural architectures to explicitly account for spatial and
temporal dependencies across data points.

Preliminaries
We start by reviewing the building blocks of our model, then
elaborate on our approach.

Deep Learning Models
Deep learning models can be viewed as complex non-linear
mappings that can learn hierarchical representations of the
data. Deep Neural Networks (DNN), Convolutional Neural
Networks (CNN), and Long-short Term Memory (LSTM)
networks are some typical architectures (LeCun, Bengio,
and Hinton 2015). They are typically composed of a set of
layers such that the output of one layer is the input of the
next. CNNs and LSTMs are used in our proposed model.

A DNN is the basic form of feed-forward neural network,
built using fully connected layers. Each fully connected
layer takes a vector x ∈ Rn as input followed by a non-
linear function f(·) (usually a rectified linear unit (ReLU)
or tanh) and finally outputs a vector c ∈ Rn̂ such that

c = f(Wx+ b),

whereW ∈ Rn̂×n is the weight matrix and b ∈ Rn̂ the bias.
A CNN is mainly composed of three types of layers: con-

volutional, pooling, and fully connected. Its convolutional
layer shares weights across the first two input dimensions
(2-d convolution) and thus greatly reduces the number of pa-
rameters. A convolutional layer takes a tensor x ∈ Rh×w×d

as input, followed by a nonlinear function (usually ReLU)
and sometimes a pooling layer (usually max-pooling), and
outputs a tensor c ∈ Rĥ×ŵ×d̂ given by

c = p (f(W ∗ x+ b)) ,

where p(·) is the pooling function, f(·) is the nonlinear func-
tion, W ∈ Rl×l×d̂ is a weight matrix defining a convo-
lutional filter, “∗” is a 2-dimensional convolution operator
over dimensions h and w, and b ∈ Rĥ×ŵ×d̂ is the bias term.

An LSTM is a special type of Recursive Neural Network
(RNN) that takes sequential data as input (Hochreiter and
Schmidhuber 1997). For each time step t, it maintains a hid-
den state vector ht that depends on the previous state ht−1,
and provides an output ot that is a function of the hidden
state ht. The mappings from ht−1 to ht, usually encoded as
LSTM cells, and the mappings from ht to ot, usually repre-
sented as fully connected layers, share parameters across all
time steps.

Gaussian Process Modeling
A Gaussian Process (GP) is a non-parametric probabilis-
tic model defined as a collection of random variables
{f(x)}x∈X , for which any finite subset has a joint Gaussian
distribution (Rasmussen 2006), denoted as

f(x) ∼ GP (m(x), k(x,x′)) ,

where the mean function m(x) represents the expectation
E[f(x)] and the kernel function k(x,x′) defines the covari-
ances cov(f(x), f(x′)).

In this paper, we use a linear GP model defined as

g(x) = f(x) + h(x)Tβ,

where x ∈ Rd, f(x) ∼ GP(0, k(x,x′)) is a zero-mean GP
modeling the residuals of a linear model, h(·) is a fixed set
of basis functions, and β is an independent random variable
with Gaussian prior β ∼ N (b,B). For the kernel function,
the squared exponential kernel is commonly used,

kSE(x,x
′) = σ2 exp

(
−‖x− x

′‖22
2r2

)
,

where ‖·‖2 denotes the L2 norm, σ and r are hyperparam-
eters for the kernel. Since we only have access to noisy ob-
servations in practice, we add an extra Gaussian noise term
(with variance σ2

e ) to the covariance

k(x,x′) = kSE(x,x
′) + σ2

eδx,x′ ,

where δx,x′ is the Kronecker delta. See (Rasmussen 2006)
for more details on the linear GP model.



Proposed Approach

Problem Setting

We consider the problem of predicting the average yield of
a type of crop (e.g., soybean) for a region of interest based
on a sequence of remotely sensed images taken before the
harvest. Specifically, we are interested in the average yield
per unit area in a given geographical region, e.g., a county or
district. As input, we are given a sequence of multispectral
images (I(1), · · · , I(T )) covering the area of interest. Each
multispectral image I(t) corresponds to a different time t
within a year, and is a tensor I(t) ∈ Rl×w×d, where l, w
are the number of horizontal and vertical pixels, and d is
the number of bands per pixel. Note that a general “crop
mask” identifying pixels corresponding to farmland is avail-
able worldwide at 500 m resolution (DAAC 2015). While
we can mask out pixels that do not correspond to farmland,
we do not generally know which pixels correspond to the
particular crop we are targeting (e.g., soybeans).

Our goal is to learn a model that maps these raw image
sequences to the average crop yield. Intuitively, this is pos-
sible since factors related to plant growth are captured in the
images (Lobell et al. 2015). As training data, we are given a
set

D =

{(
(I(1), · · · , I(T ), gloc, gyear)1, y1

)
, · · · ,(

(I(1), · · · , I(T ), gloc, gyear)N , yN

)}
of image sequences, geographic locations gloc, years gyear,
and corresponding ground truth crop yields yi ∈ R+. We
will also consider the (harder) problem of making real-time
predictions based on sub-sequences (I(1), · · · , I(t)) for t <
T . This corresponds to the problem of forecasting the yield
before the harvest date in an online manner, when only a
subset of the remotely sensed data are available.

From Raw Images to Histograms

Given the scarcity of labeled training data (|D| can be less
than 10, 000), directly training a deep model end-to-end is
not feasible. Pre-training on popular benchmarks from com-
puter vision like Imagenet is also not appropriate, because
remotely sensed images are multi-spectral and taken from a
bird’s eye viewpoint. We therefore designed a dimensional-
ity reduction technique under the assumption of permutation
invariance. Our approach is based on the following intuition:
we don’t expect the average yield to depend (much) on the
position of the image pixels, since they merely indicate the
locations of the cropland. While some dependence on the
position is possible (e.g., due to soil properties or elevation),
to achieve tractability we ignore these dependencies.

Assuming permutation invariance holds, only the number
of different pixel types in an image (pixel counts) are in-
formative. In other words, there is no loss of information
in mapping the high-dimensional image into a histogram of

pixel counts 1. Assuming pixel values in digital images are
discrete and can take up to b different values per band, the
resulting histogram would have bd bins, which might not be
practical (e.g., in our application each band intensity can
take b = 256 different values, and d = 9). Therefore, we
separately consider each band Ik in an image I(t) where in-
dex t is omitted for notational simplicity, discretize the pixel
values into b bins and produce an histogram hk ∈ Rb for
each individual band k = 1, · · · , d. By concatenating all hk

into H = (h1, · · · ,hd), we obtain a compact representa-
tion of the original multi-spectral image. By treating each
band independently, we are implicitly making a mean-field
assumption (Parisi 1988), i.e., we are assuming that the (nor-
malized) histogram of a multi-spectral image I can be ap-
proximated as a product of simpler (normalized) histograms
hi over individual bands.

From Histograms to Crop Yield
While the histogram approach outlined in the previous sec-
tion can drastically reduce the dimensionality on the input
data, the desired mapping (H(1), · · · ,H(T )) 7→ y, is still
highly non-linear and complex. Rather than hand-crafting
features, we leverage ideas from representation learning and
use deep models to automatically learn relevant features
from data.

The sequential nature of the inputs (H(1), · · · ,H(T ))
suggests the use of temporal models, such as LSTMs. We
use an LSTM architecture that takes sequences of vectors as
input, and add a fully connected layer on the last LSTM cell
to finally yield the prediction y corresponding to the input
sequence, as is shown in Figure 1b. To fit the model, we first
flatten each histogramH(t) ∈ Rb×d into a vectorS(t) ∈ Rr,
r = b× d, then feed the sequence (S(1), · · · ,S(T )) into the
network. L2 loss is used for the regression task. To prevent
overfitting, we regularized the network by adding a dropout
layer with dropout rate 0.75 after each state transition.

Inspired by the success of CNN architectures on se-
quential data (Karpathy et al. 2014), we also use a CNN
architecture to model the non-linear mapping. We stack
(H(1), · · · ,H(T )) into a 3-D histogram H ∈ Rb×T×d,
where H(t) is the tth component in the second dimension
of H. We feed the 3-D histograms as input to the CNN, and
the convolution operation is performed over the “bin” and
“time” dimensions. Some typical 3-D histograms are shown
in Figure 1a. The visualization exhibits distinct visual pat-
terns corresponding to different crop yield conditions (high
vs low yield), indicating that our CNN might be able to learn
useful features.

The structure of our CNN model is shown in Figure 1c.
We note that in our case we don’t want the location invari-
ance property given by the pooling layer (LeCun, Bengio,
and Hinton 2015), since different locations in the histogram
have different physical meanings. We solve the problem by
replacing the pooling layer with a stride-2 convolutional
layer to reduce the size of the intermediate feature maps. We

1Given the pixel counts from a histogram, one can reconstruct
an image equivalent under the permutation invariance assumption
by arbitrarily placing the pixels.



(a) 3-D histogram visualization
(b) The LSTM structure (c) The CNN structure

Figure 1: Visualization of the input data and used architectures. Left: Figures of typical 3-D histograms H ∈ Rb×T×d flattened
in the band dimension d under (i) low crop yield, (ii) mid crop yield, and (iii) high crop yield conditions are shown in the left
panel. Each row corresponds to a different spectral band, while each column represents an individual data point. Each square is
a slice of H, where the x-axis corresponds to the “time” dimension T , and the y-axis to the “bin” dimension b. Brighter pixels
indicate higher pixel counts in that bin. There exists distinctive visual differences between high yield and low yield conditions
(for example in the second and the seventh bands). Mid: The adopted LSTM structure. Right: The adopted CNN structure,
where stride-1 convolutional layers are in light blue, stride-2 convolutional layers are in dark blue and a fully connected layer
is attached at the end.

use batch normalization to facilitate gradient flow (Ioffe and
Szegedy 2015), and dropout with rate 0.5 to prevent overfit-
ting after each convolutional layer.

Integrating the Spatio-temporal Information: Deep
Gaussian Process
There are many features relevant to crop growth that are not
revealed in remote sensing images, such as the soil type, fer-
tilizer rate, etc. These features could be inherent to specific
locations (e.g., soil type) and may not change significantly
over time, and thus could exhibit spatial and temporal pat-
terns. To illustrate this point, we draw a variogram (Cressie
and Hawkins 1980) on the absolute prediction error of the
CNN model introduced in the previous section (trained on
the data described in the Experimental section below) in
Figure 2. A variogram illustrates the variance across data
points as a function of their geographical distance. The re-
sult shows that the errors corresponding to data points that
are spatially closer tend to vary less (lower variance). There-
fore, it suggests that we can reduce the error by incorpo-
rating a Gaussian Process model on top of the deep mod-
els previously described (Hinton and Salakhutdinov 2008;
Wilson et al. 2015).

The analysis above indicates that the errors could cor-
relate with each other spatially and temporally. This moti-
vates us to design a linear Gaussian Process model where
the mean function is linear with respect to the deep fea-
tures, i.e., the last layer’s input in our architectures, and the
covariance kernel depends on the spatio-temporal structure.
More concretely, let x = (I(1), · · · , I(T ), gloc, gyear) denote
an original data point, h(x) denote the feature vector ex-
tracted from the deep models based on (I(1), · · · , I(T )), and

Figure 2: A variogram on the absolute prediction error of the
proposed CNN model.

g = (gloc, gyear). Then in our Deep Gaussian Process model
we have

y(x) = f(x) + h(x)Tβ,where f(x) ∼ GP(0, k(x,x′)),
and h(·) is a set of basis functions corresponding to the final
layer in our deep models, β follows a Gaussian prior β ∼
N (b,B), and the kernel function is

k(x,x′) =σ2 exp

[
−‖gloc − g′loc‖22

2r2loc
−
‖gyear − g′year‖22

2r2year

]
+ σ2

eδg,g′ .

We choose b as the weight vector in the last layer of
our deep models and B = σbI , while treat σ, σb, σe, rloc
and ryear as hyperparameters. During training, we conduct a



grid search for the optimal hyperparameter values based on
cross-validation performance, using the closed-form expres-
sions in (Rasmussen 2006).

Experiments
Data Description
To compare with prior work, we evaluate our model in the
United States and choose soybean as the target crop since
it has been widely investigated in prior work (Bolton and
Friedl 2013; Johnson 2014).

The input data we use include remote sensing data on sur-
face reflectance, land surface temperature, and land cover
type derived from the MODIS satellite, which are available
worldwide (DAAC 2015). We use multi-spectral images col-
lected 30 times a year, from the 49th day to the 281th day
at 8-days intervals. We discretize all the images using 32
bins to compute the pixel histograms. The resulting input
histogram is H = (H(1), · · · ,H(T )), H(t) ∈ Rb×d with
b = 32, d = 9, and T = 30. The ground truth output data are
the yearly average soybean yields at the county-level mea-
sured in bushels per acre, publicly available on the USDA
website (USDA 2016).

We select 11 states in the U.S. that account for over 75%
of the national soybean production and use data from 2003
to 2015, resulting in |D|= 8945 data points in total. All
sources of remote sensing data are cropped according to
county borders, while non-crop pixels are removed with the
help of general world-wide land cover data (DAAC 2015).
More details are provided in the appendix.

Competing Approaches
We compare our model with widely used crop yield predic-
tion models. The baseline methods include ridge regression
(Bolton and Friedl 2013), decision trees (Johnson 2014), and
a DNN (Kuwata and Shibasaki 2015) with 3 hidden layers
and 256 neurons each. Their input is a sequence of T = 30
average NDVI values for the region of interest. Each element
of the sequence is computed by first averaging the corre-
sponding image I(t) across the region, and then calculating
the NDVI value (which is a scalar). Note that traditionally
precise pixel masks (e.g., soybean mask) are used to remove
irrelevant pixels in input images and weather data are also
used as input, but for comparison these models are provided
with the same inputs as our proposed model, i.e., only re-
mote sensing data. The hyperparameters in these models are
optimized in cross-validation.

Results
We report the Root Mean Square Error (RMSE) of our
county-level predictions in Table 1. The result is averaged
over 2 runs to account for the random initialization and
dropout during deep model training. Each row corresponds
to predictions made for that year, using a model trained on
data from all preceding years. Learning rates and stopping
criteria are tuned on a held-out validation set (10%). Our re-
sults demonstrate that our CNN and LSTM approaches out-
perform competing methods significantly. By adding the GP
component, our models achieve even better performance,

Baselines Deep models

Year Ridge Tree DNN LSTM LSTM CNN CNN
+ GP + GP

2011 9.00 7.98 9.97 5.83 5.77 5.76 5.7
2012 6.95 7.40 7.58 6.22 6.23 5.91 5.68
2013 7.31 8.13 9.20 6.39 5.96 5.50 5.83
2014 8.46 7.50 7.66 6.42 5.70 5.27 4.89
2015 8.10 7.64 7.19 6.47 5.49 6.40 5.67

Avg 7.96 7.73 8.32 6.27 5.83 5.77 5.55

Table 1: The RMSE of county-level model performance.

with 30% reduction of RMSE from the best competing
methods.

To show that the GP has the capability to reduce spatially
correlated errors, we plot the prediction errors of the CNN
model for year 2014 in Figure 3. As previously shown in
the variogram of Figure 2, it is apparent that errors are spa-
tially correlated (Where red means underpredicting and blue
means overpredicting). After adding the GP component, the
correlation is reduced. Intuitively, we believe the errors are
due to properties that are not observable in remote sensing
images (e.g., due to soil). The GP part learns these patterns
from past training data and effectively corrects for them.

(a) CNN (b) CNN+GP

Figure 3: County-level error maps before and after adding
the GP. The color represents the prediction error in bushel
per acre.

Real-Time Prediction throughout the Year
In the U.S., soybean is often planted in May and June and
harvested in October and November. Early crop yield pre-
dictions are essential for food security applications. To this
end, we train and test our model on a sub-sequence of the
input (I(1), · · · , I(t)) where t < T . Figure 4 shows the per-
formance if we tried to predict the harvest each month in an
online manner, given only the data available up to that point.
We observe that none of the models perform well in early
months, probably because there is not enough information
yet on plant growth. But as we gather more information, all
the models improve, and the gap between our models and
competing approaches increases.

We further average our county-level predictions to com-
pare with USDA annual yield estimates aggregated at the
country level, in terms of Mean Absolute Percentage Error



July August September October

Ours USDA Ours USDA Ours USDA Ours

MAPE 5.65 3.92 3.37 4.14 3.41 2.48 3.19

Table 2: The MAPE of US-level model performance, aver-
aged from 2009 to 2015.

(MAPE). Results show that our model outperforms USDA
predictions by 15% on average in August and September.
Note that USDA predictions are survey-based, while our
techniques use cheap, passively collected data.

Figure 4: Model performance in each month measured in
RMSE. The results are averaged from 2011 to 2015.

Understanding Feature Importance
To understand how our model is utilizing the input data, we
provide an analysis inspired by the permutation test for ran-
dom forests (Breiman 2001). More specifically, we consider
the effect of randomly permuting the values of a specific
feature over the entire data (without changing the other fea-
tures). For our 3-D histogram input, we separately permute
across time and band dimensions by shuffling a slice of the
histogram across all the data, while holding the rest fixed.
The average performances from 2011 to 2015 of the models
trained on this perturbed data are shown in Figures 5 and 6.

The permutation test across bands in Figure 5 reveals
two useful insights on the relative importance of different
bands for yield prediction. Traditionally, band 2 as a near
infrared band, is viewed as a key factor in revealing crop
growth (Quarmby et al. 1993). While putting some emphasis
on band 2, our model also focuses on band 7, a short-wave
infrared band always ignored by traditional approaches. The
high dependence on land surface temperature, shown as
band 8 and 9, is also confirmed by previous work (Johnson
2014). Second, the importance of different bands varies over
different phases in crop growth. Growth-related bands 2 and
7 are given higher relative importance in later months (when
crop has grown), while temperature bands 8 and 9 are more
significant in earlier months (when crop has not grown yet).

The permutation test across time in Figure 6 is also infor-
mative. Surveys show that soybean planting usually starts on

Figure 5: The increase of RMSE after permutation over
bands. We evaluate predictions made in different months.

Figure 6: The increase of RMSE after permutation over time
within a year. The model with complete data are used for
evaluation.

day 110 and ends on day 190, while harvest usually starts on
day 250 (USDA 2010). The trend in Figure 6 indicates that
the most useful data are collected during the growing season,
peaking at days just before the harvest (around day 240).

Conclusion

This paper presents a deep learning framework for crop yield
prediction using remote sensing data. It allows for real-time
forecasting throughout the year and is applicable worldwide,
especially for developing countries where field surveys are
hard to conduct. We are the first to use modern represen-
tation learning ideas for crop yield prediction, and success-
fully learn much more effective features from raw data than
the hand-crafted features that are typically used. We propose
a dimensionality reduction approach based on histograms
and present a Deep Gaussian Process framework that suc-
cessfully removes spatially correlated errors, which might
inspire other applications in remote sensing and computa-
tional sustainability.
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